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Abstract Wepresent a newmethod to control an aggregated
electric load profile by exploiting the flexibilities provided by
residential homes. The method is based on a common energy
price combined with inclining block rates, broadcasted to
all households allowing them to minimize their energy pro-
visioning cost. The distributed home energy management
systems receive the price signal and use mixed integer lin-
ear programming for optimal scheduling of load, storage,
and generation devices. The method provides excellent scal-
ability as well as autonomy for home owners and avoids load
synchronization effects. As proof of concept, an optimization
algorithm for determining a day-ahead price is applied in two
case studies. An excellent conformance between a given ref-
erence load profile and the resulting aggregated load profile
of all households is demonstrated.

Keywords HEMS · Real-time price · Inclining block rates ·
Demand response · Distributed load management · MILP

1 Introduction

The electric power demand in traditional grids with con-
stant energy tariffs shows quite large variations between peak
load and off-peak periods. Such load curves generally do not
coincide with typical production profiles of power plants,
especially if there is a large share of regenerative, fluctuat-
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ing energy resources present. Due to this reason, in future,
a better adherence of the electricity demand to the produc-
tion profile is required. Therefore, one of the major aims of
smart grids is the reduction of the gap between demand and
supply [10].

Home energy management systems (HEMS) constitute
an essential part of future smart grids. HEMS enable effi-
cient demand response (DR) and demand side management
(DSM) programs since they are capable of intelligently man-
aging and altering electricity consumption of residential
households [11]. In [20], a management strategy is proposed
minimizing electricity costs based on a day-ahead electric-
ity tariff. Recently, various approaches for the coordinated
use of flexible loads have gained attention that include net-
work constraints into their optimization targets. [1] proposes
a three-phase model with constraints on voltages, currents
and powers in the network. In [12], the peak-to-average ratio
(PAR) of distribution transformer load is included into the
target function forminimization. In [26], the problem of opti-
mal load scheduling is combined in a single framework with
the optimal power dispatch problem. This work investigates
the possibility that the aggregated load profile of all residen-
tial customers of a utility company follows a given reference
schedule. This enables a more cost effective energy procure-
ment as well as it allows to prevent overload situations in the
distribution grid by constraining load peaks in the desired
reference schedule.

Various pricing schemes have been employed for billing
purposes by utility companies with the aim of finding the
most efficient energy management method. The pricing
schemes proposed so far for smart grids are real-time pricing
(RTP) [2,6], time-of-use pricing (ToU) [7], critical-peak pric-
ing (CPP) [8], day-ahead pricing (DAP) [4], inclining block
rates (IBR) [21] etc. In RTP scheme, consumers are informed
about the pricing rates on hourly basis as the ratesmay change
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hourly. In ToU pricing scheme a consumer is charged least
during off-peak, less during mid-peak and more during peak
periods. IBR represents a pricing regime, where the energy
price rises progressively based on the current power level
(furtheron called tier) [11,21].

In this paper we follow the approaches of Mohsenian-Rad
and Leon-Garcia [14] as well as Zhao et al. [27] who pro-
pose a combination of RTP with IBR. Based on this tariff
scheme, households are able to optimize their energy provi-
sioning cost by scheduling their applianceswhich consumeor
produce energy (therefore called energy devices further on)
accordingly. But neither Mohsenian-Rad and Leon-Garcia
[14] nor Zhao et al. [27] showed how to optimize the sched-
ule of different energy devices with different characteristics
for particular households. Further it is not yet known if the
combination ofRTP and IBRcan be used to adapt the demand
to the supply, i.e. to adhere to a collective reference schedule.

Mixed integer linear programming (MILP) has been high-
lighted as a powerful optimization method for DSM within
HEMS in recent years [3,12,17,18]. In various studies, a
day-ahead pricing scheme has been used to minimize the
electricity charges of the consumer. In this paper we show
that MILP can also be used to schedule the energy devices
of households receiving a RTP & IBR price scheme.

Furthermore, we show with an iterative method, that it is
possible to determine the electricity tariff in such a way, that
the aggregated load of a reasonable number of households
follows a given reference schedule with good precision.

The paper is organized as follows: Sect. 2 motivates
and explains the system architecture and the chosen pricing
scheme for residential load management. Section 3 defines
the optimization problem and explains the MILP approach
for finding load schedules with minimal energy provision-
ing cost for individual households. Section 4 illustrates the
potential of the method by demonstrating the adherence of
aggregated load profiles to a given reference at the example
of two case studies. Section 5 contains a conclusion.

2 Pricing scheme and system architecture

In this work we propose a method how utility companies
can control the aggregated load profile of their customers.
Surveys [23] have shown that households prefer to retain
control of their own devices and do not favor direct remote
control by the utility company. Therefore, only approaches
which leave autonomy to the households are to be considered:
the households receive incentives (price signal) letting them
decide on their ownhow to react considering the local degrees
of freedom.

All price schemes require a signal generator which sends
the current prices to the households. In the proposed approach
the price signal is broadcasted from the regional utility com-

Fig. 1 Proposed system architecture

pany to the households’ HEMS which schedule local energy
devices with respect to minimal cost while not affecting the
home-owners comfort. The system architecture is shown in
Fig. 1. The architecture involves an additional communica-
tion channel in return direction for billing purposes. This
channel is not described inmore detail, since it conformswith
widely applied smart metering practice today. The approach
described in this work, however, assumes an established
metering infrastructure allowing the utility company to peri-
odically collect (e.g. daily) measured load profiles of each
household.

The analysis of [2,6] shows that RTP is the more econom-
ically useful price model in contrast to the others. Therefore,
a RTP scheme has been adopted in this work as well.

For an efficient device scheduling price information of
a future time window is necessary. In environments with
real-time pricing (RTP), households will start forecasting the
prices in order to optimally schedule their devices. Whether
households perform their own price forecasts or receive it
from an external service provider does not change the out-
come of collective load management, since reliable forecasts
will converge with real prices of the future time window
either way. The approach described in this work is based on
a common price forecast directly distributed by the utility
company as part of the price signal shown in Fig. 1. The
forecasted time window has been chosen to cover the period
of one day. Such a tariff scheme is also known as day-ahead
real-time pricing (DA-RTP) in literature. How price forecasts
are calculated is not content of this work.

Mohsenian-Rad and Leon-Garcia [14] as well as Zhao
et al. [27] argue that DA-RTP leads to load synchronisa-
tion because all electric devices with the possibility to be
turned on are activated when the prices are low—and vice
versa. Instead of distributing the load over the day it leads
to concentrated peaks in short time intervals. This behaviour
prevents good adherence to a reference load profile and can
lead to overloaded grids. To avoid this load synchronisation
Mohsenian-Rad and Leon-Garcia [14] and Zhao et al. [27]
propose to combine DA-RTP with IBR.
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Fig. 2 Definition of power levels corresponding to price tiers. The
point p = 0 divides the power axis into positive and negative tiers (tier
zero does not exist)

The price signal generator does not provide one price but
several price bands, so-called tiers. Price tiers are defined
with respect to the level of electric power p. Figure 2 shows
several price tiers specified by p̂k . The energy price τt for a
household at a certain time depends on its momentary power
drawn (k > 0) or provided (k < 0) by the household. In case
of power drawn, higher power levels lead to higher energy
prices; in case of power provision, higher power levels lead
to lower energy refunds (see Fig. 8 for an example). Thus,
households try to remain in the lowest possible price tier
and keep their power consumption low. This leads to a wider
temporal distribution of their loads and thus prevents load
synchronization effects.

In order to treat different households with different load
characteristics in a fair way, the power levels p̂k locating the
tiers can be defined with respect to average load in consump-
tion or production direction for each individual household.
The process of determining these power levels can take place
periodically, e.g. once a month, and does not necessarily
require communication between the utility company and the
corresponding household, as long as the calculation base is
transparent. The HEMS can potentially determine the power
levels by itself based on communicated, normalized signals
valid for all customers.

In summary, we employ a rather complex price signal with
several tiers. The advantages of this approach (DA-RTP &
IBR) are:

Scalability Due to one-way communication of the price sig-
nal, DA-RTP & IBR is scalable while the amount of data
sent per day might be larger than in other approaches.

Autonomy The decision autonomy is completely given to
the households, including the management of their com-
fort requirements.

Privacy Beyond disclosure of their net load profile for
billing purposes which is already widely applied smart
metering practice, home owners do not need to disclose
any information about the existence or assignment of
local energy devices. Load profiles do not need to be
collected in real time and can be communicated daily or
weekly.

Load synchronisation Load synchronisation effects can be
eliminated.

Flexibility provision The approach enables the utility com-
pany to benefit from flexibilities provided by the house-

holds. With adequate price signals, the aggregated load
profile can be shaped to the utility company’s needs (as
shown in Sect. 4.3).

Economic incentives Households have the possibility to
operate their energy devices in a more economic way.
They can profit from their capability of supporting the
grid.

Interoperability The price based interface is technology
independent and allows otherwise all HEMS-types to be
applied by the households.

3 Local optimization problem for residential homes

The proposedmethod for regional loadmanagement is based
on a price interface common to all residential homes. This
turns the complex optimization problem with a large number
of homes and corresponding flexible devices into a dis-
tributed and much simpler optimization problem with the
scope of one customer or one household, respectively. The
primary objective is to minimize the cost for energy procure-
ment on the level of each household.

3.1 Energy device model

For an efficient scheduling of heterogeneous load and gen-
eration devices in residential homes, device models which
can be handled in a homogeneous manner are useful. Fur-
thermore, they shall represent the flexibility offered by the
individual energy devices as accurately as possible. For this
purpose, the framework of power nodes has been adopted [9].
This approach is based on the idea, that an energy device in
general converts electric energy between the grid and the
demand- or supply side (see also Fig. 3). We use a simplified
version in which a linear description of device behaviour is
used in order to apply it with MILP. Often, there is some
energy storage capacity available, connecting the demand-

Fig. 3 Dynamic model of an energy device
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Table 1 Configuration of the device model for the energy devices considered in this work

Device C (kWh) ηload [25] ηgen [25] pext (kW)

Boiler Storage capacity for heat 1: electr. boiler >1: heat
pump boiler

– Hot water usage (including heat
losses)

PV 0 – Converter efficiency Produced DC power (including
potential power curtailment)

Electric vehicle Battery capacity Charging efficiency V2G discharging efficiency Battery power consumed by
vehicle

Uncontrollable load 0 1 – Sum of uncontrollable
electrical loads

Heat pump Total heat capacity of building COP> 1 – Total heat losses of building

Battery Usable battery capacity Converter efficiency Converter efficiency Losses of battery modules

or supply side with the electrical installation or grid side. In
case of an electric load, electric power pload > 0 charges
the local storage capacity C , while the demand pext > 0 is
served from the storage. In case of a generation device, the
local storage is supplied by pext < 0 and the stored energy
is converted into electric energy on grid side pgen > 0. In
this model, pext primarily represents the energy demand or
supply by the external process, however, it also includes stor-
age losses or potentially wasted energy due to curtailing. The
dynamics of an arbitrary energy device can be described by
the power node equation:

Cẋ = ηload pload − 1/ηgen pgen − pext (1)

ẋ denotes the derivative of the state-of-charge (SoC) of the
corresponding device with respect to time. ηload and ηgen

denote the conversion efficiency in either direction, respec-
tively. The equation describes the energy balance between
the energy which is generated or consumed by a device on
one hand, and the energy which is drawn or fed back to the
grid. The devices flexibility is given by its buffering capabil-
ity, i.e. by its storage capacity C . The interpretation of the
mentioned parameters in the context of the different energy
devices is described in Table 1.

3.2 Definition of scheduling problem

The minimization of the energy procurement cost being
performed by the HEMS is formulated as an optimization
problem using MILP. The generic form of the problem is
given by

min
p

fT · p subject to

⎧
⎨

⎩

A · p ≤ b
Aeq · p = beq
lb ≤ p ≤ ub

(2)

The vectorp holds a combination of either integer or continu-
ous variables to beoptimized. In thepresent case, these are the
discrete time vectors ploadt and pgent for each energy device

and time t ∈ [1, T ]. fT ·p represents the linear target function
of the problem to be minimized, written as the scalar product
of a vector f with p. The first two rows on the right of Eq. 2
represent linear inequality and equality constraints, respec-
tively, that define the space of possible solutions (see also
Sect. 3.2.2). lb and ub define further limitations on p directly.

The full MILP formulation includes several hundred vari-
ables (for each time step and for each device) to be optimized
and a similar number of constraint equations representable
in the form given above in Eq. 2. The specification of the
full problem is omitted at this point, since the approach has
been used in similar frameworks and is not new in the context
of HEMS [12,26]. In the subsections below, the underlying
concept applied in this work is described.

The optimization is carried out in a time window of 24 h.
The demand or supply pextt of the individual energy devices
needs to be forecasted for this timewindow. The performance
of the scheduler, therefore, depends on the quality of this
forecast. The chosen duration of 24 h allows to use weather
forecastswith good precision on one hand.On the other hand,
time constants of the energy devices’ storage capabilities are
typically shorter or of the same order of magnitude, allowing
the scheduler to exploit the full flexibility potential of the
household.

3.2.1 Target function

The target function fT · p in Eq. 2 to be minimized as a
result of the MILP algorithm represents the total energy
cost K in the time interval t ∈ [1, T ] optimized by the
scheduler:

K =
T∑

t=1

(
N∑

k=1

p+
k,t · τk,t · Δt −

1∑

k=−N

p−
k,t · τk,t · Δt

)

(3)

p±
k,t is the total electric power in tier k either in consumer (+)

or in producer (−) direction. τk,t is the energy price valid for
tier k at time t . Δt is the duration of one discrete time step.
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Fig. 4 Device schedules for minimal cost at the example of one household. Left schedules for the individual energy devices. Right break down of
total load pgridt in the household onto the defined tariff tiers τk,t . The schedule corresponds to tariff structure of case study B

The total electric power at the grid connection point at time
t is given by the sum over all tiers as

pgridt =
N∑

k=1

p+
k,t −

1∑

k=−N

p−
k,t =

∑

# devices

ploadt − pgent (4)

3.2.2 Energy device scheduling

Each energy device exhibits constraints that must be fulfilled
by the optimization algorithm. These constraints have to be
formulated in linear dependence with the unknown vector p
of the optimization problem (see also Eq. 2). The dominant
constraint for each device providing some storage between
energy demand and electric energy on grid side is to keep the
state-of-charge (SoC) xt in the allowed range 0 ≤ xt ≤ 1 for
t ∈ [1, T ]. The SoC can be derived fromEq. 1 and is given by

xt = x0 + Δt

C

t∑

i=1

(

ηload ploadi − 1

ηgen
pgeni − pexti

)

. (5)

x0 ist the current SoC at time t = 0 (beginning of time
window for optimization). The limitations of xt can be trans-
formed into inequality equations of the form A · p ≤ b,
constituting the optimization problem in Eq. 2. In addition,
each energy device has constraints on minimum and maxi-
mum allowed schedulable electrical power ploadt and pgent ,
again represantable within Eq. 2. The MILP algorithms can
also handle devices of type on/off represented as integer or
binary constraints of schedulable power. Furthermore it is
possible to introduce extra constraints of the form xt > X∗
valid at a specific point in time t , ensuring that SoC xt is larger
than a user defined value X∗. This type of constraint has been
used in this work to specify a minimum SoC of hot-water
boilers in the morning and a minimum SoC of an electric car
at a specified time of disconnection from the charging station.

Figure 4 shows the results of the MILP algorithm for an
exemplary household. The plot on the left contains the device
schedules for all managed devices. The sum of the device
loads defines the total load of the household pgridt which is
broken down onto the defined tariff tiers τk,t according to
Eq. 4 (plot on the right). The tariff used in this example cor-
responds to case studyB introduced below in Sect. 4 (see also
Figs. 7 and 8). The following energy devices are managed by
the HEMS:

EV: Required battery recharge of 32 kWh between 20.15
and 03.45 o’clock (battery capacity: 40 kWh).

Heat pump: Average heat losses in the house 6 kW(provided
storage capacity: 24 kWh).

Boiler: hot water usage is 9.6 kW scattered throughout the
day (capacity of boiler: 12 kWh).

Battery: maximum power ±4 kW (capacity 10 kWh).
PV: production profile for a clear day (produced peak power:

6 kW).
Non-controllable load: Sum of all other loads, not influ-

enced by HEMS (a standard load profile (SLP) H0 [25]
has been applied as statistical forecast).

The optimization algorithm determines the optimum
device schedules for minimal energy provisioning costs
within the time window of 24 h, considering all degrees of
freedom provided by the controllable energy devices. Three
tiers in either direction of power flow are considered accord-
ing to the right side of Fig. 4. The power intervals of tiers+3
and−3 are bounded on one side by the upper end of tiers±2
and unbounded towards higher power on the other side.

4 Case study

In order to prove our approach for shaping the aggregated
load profile, a case study has been carried out. Basis for the
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case study is a winter day with energy devices in households
of a future scenario in Switzerland.

4.1 Simulation setup

The simulation includes 100 households with a random con-
figuration of energy devices according to Table 2. The chosen
configuration has been elaborated inworkshops togetherwith
two local utility companies and resembles a future scenario
for Switzerland. References have been specified that put
the data into perspective. For each household, the device
parametrization has been determined according to the fol-
lowing steps:

1. The specified penetration in column 2 defines the prob-
ability whether the corresponding device is available in
the household.

2. Column 3 defines how the external demand or supply pext

has been constructed. In case of the boiler, an energy
demand has been chosen from the specified interval,
assuming a uniform distribution. The maximum value
of 9.6 kWh corresponds to a four person household with
a daily hot water usage of 40 l per person [15]. The daily
hot water consumption has been randomly distributed to
the simulated time slots throughout the day time. In case
of the PV system, a peak power has been chosen from the
specified interval, again assuming a uniform distribution.
The size of such systems is confined by the available roof-
top area and can be considered representative for family
homebuildings [24].An ideal production profile has been
chosen as shown in Fig. 4 (left). In case of the electric
vehicle (EV), the time of of plugging the EV into the
charging station has been randomly determined between
6.00 and 23.00 o’clock. A connection time of 8h after
plugging in was assumed. The energy demand during
charging has been randomly chosen from the specified
interval. 10 kWh correspond to a travel distance between
40 and 90 km depending on the type of car [5]. These
travel distances seem high compared to the average daily
traveling distance of 37 km inSwitzerland [19].However,
the performance values reported by the car manufac-
turers have to be considered ideal (no heating, no air
conditioning, ideal operating points etc.). In case of the
uncontrollable load, a standard load profile [25] was used
based on a yearly energy usage which has been randomly
chosen from the specified interval (average energy con-
sumption of a household with two or four persons) [16].
In case of the heat pump, constant heat losses through-
out the day have been assumed, again randomly chosen
from the specified interval. Depending on the size of the
house, temperature difference and insulation standard,
heat losses can vary strongly. The distribution represents
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a winter day. For the battery device, pext is set equal to
zero.

3. The efficiency of the devices are set according to column
4. In case of the heat pump, a coefficient of performance
>1 has been randomly chosen from the specified interval,
assuming a uniform distribution (see e.g. [13]).

4. Column 5 describes the limitations imposed on the
schedulable electrical power. In case of the boiler, only
an on or off state is allowed with the specified power
depending on a randomly chosen boiler type. In case of
the PV system, the production is allowed to be curtailed
continuously between 0 and 100%. In case of the electric
vehicle, the power is assumed to be continuously control-
lable between 0 and the specified maximum value. 50%
of the charging stations have been assumed to allow to
discharge the traction battery into the grid. In case of the
heat pump, the maximum electrical power was assumed
to be continuously controllable between zero and twice
the demanded heating power currently required by pext.
The premise for such controllability is an rpm-regulated
device. The battery device is assumed to be capable of
changing over the full storage capacity within 2.5h.

5. The last column 6 specifies the device capacities (where
available). The capacities have been randomly chosen
from the specified intervals, assuming a uniform distri-
bution. The storage capacity relevant for the heat pump
is the total, effective heat capacity of the building. The
specified interval has been chosen to represent a vari-
ety of buildings of light or heavy construction type. In
[22] the effective heat storage capacityC has been calcu-
lated for a typical single-family dwelling with two floors
according to EN ISO 13786, resulting in a heat storage
capacity of 157 Wh/(m2K). With a ground area of 170
m2 and a temperature comfort zone of ±1 ◦C, C results
to 53 kWh. However, this value is valid for a storage
period of 24 h only. The effective heat capacity reduces
for shorter periods. The mean value of the interval con-
sidered in our simulation has been estimated to approx.
1/3 of this result. The storage capacities assumed for the
battery and electric vehicle conform with existing solu-
tions on the market.

4.2 Price signal optimization

The goal of the case study is to show that withmoderate price
based incentives, the regional load can be influenced in such
a way as to follow a given reference load profile. For this
purpose, a price vector τ0,t has been iteratively determined
for minimal deviation between the aggregated load of 100
simulated households ptott and a reference load preft . The price
structure contains 3 tiers for net production or consumption,
respectively:

τ±
k,t = ak ± τ0,t with

T∑

t=1

τ0,t = 0 (6)

ak specifies a price offset for each tier k. Each iteration n for
price improvement includes the following three steps:

1. The net load pgridt is determined for each household based
on price τ n0,t .

2. The aggregated regional load ptott is determined as the
sum over all simulated households.

3. An improved price τ n+1
0,t is calculated based on the devi-

ation Δpt = ptott − preft between regional load and its
reference.

The last step determines a new price signal with the aim of
minimizing the deviation from an arbitrary reference load
preft . The calculation involves five parameters (kp, ki , kd ,
k0, and kt ), see also Fig. 5. Primarily, the price adaption

Fig. 5 Method for iterative improvement of price structure for regional
load management

Fig. 6 Evolution of the standard deviation of Δpit between the aggre-
gated load and its reference as a function of iteration n. The two curves
represent two different reference load profiles of case studies A and B
introduced in Sect. 4.3 below. The parameters used for the price opti-
mization are given in the box
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Fig. 7 Aggregated load profiles for optimized price structures. Left case study A (flat reference load profile); right case study B (reference profile:
inverted standard load profile H0 [25]). The standard deviation from the reference load profile is A: 2.7% and B: 5.7%

is proportional to the deviation from the reference load at
the corresponding time t (parameter kp). However, also the
history of past iterations is considered (ki ), the tariff change
rate from one iteration to the other (kd ) as well as the adjacent
time steps (kt ). τ n+1

t is calculated as the solution of the set
of equations for each t :

kp · Δpnt + ki ·
n−1∑

j=1

Δp j
t + kt ·

(
τ n+1
t−1 − τ n+1

t

)

+ kt ·
(
τ n+1
t+1 − τ n+1

t

)
+ kd ·

(
τ nt − τ n+1

t

)

− k0 · τ n+1
t = 0 (7)

For the simulations carried out in this work, the price signal
converged after typically 10 to 15 iterations. For more itera-
tions none or only minor improvements have been observed
(see also Fig. 6). Since an iterative approach for price deter-
mination is not directly applicable in reality, finding more
practicable methods must be subject of further research. The
results presented in this work, however, demonstrate the pos-
sibility of collective loadmanagement based on the proposed
tariff scheme.

4.3 Results on regional load shaping

The aggregated load has been calculated for two different
reference load profiles. In order to demonstrate the potential
of our proposed method two rather extreme reference load
profiles have been chosen: Case study A represents a price
structure optimized for a constant reference load whereas
case study B has been optimized for an inverted standard
load profile H0 as shown in Figs. 7 and 8. The total power
with optimized tariff shown in Fig. 7 on the left is compared
to a reference scenario resulting from a constant tariff of
20 rp/kWh1 for consumed and −10 rp/kWh for generated

1 rp is the subunit of the Swiss franc (100 rp = 1 CHF).

energy, respectively. The difference between cases A and B
is solely due to a different price function τ0,t . The scenario
for the simulated households and its corresponding energy
devices as well as all other price and simulation parameters
have not been altered. The good adherence between reference
load and resulting aggregated load (standard deviation with
respect to average daily load is 2.7 and 5.7% for case stud-
ies A and B, respectively) demonstrates the effectivity of this
method in utilizing the flexibility provided by its households.
The statistical basis with 100 simulated households can be
considered small compared to the foreseen number of house-
holds belonging to a managed region. It can be expected that
even better results can be obtained with larger numbers of
households participating in the same program.

4.4 Cost savings for residential homes

Figure 9 shows the distribution of cost savings for 100 house-
holds taken into account for case study B. Cost savings are
determined by comparing cost of the optimized load profiles
of each household with corresponding reference load pro-
files established as follows: The reference load profiles have
been optimized with the same algorithm using a constant
tariff scenario given by 20 rp/kWh for consumed and −10
rp/kWh for generated energy (see also Fig. 7, left). Such a tar-
iff favours internal consumption, however, does not give any
incentives when to draw energy from the grid nor on limiting
power.

31%of the households do not profit at all or only very little
from HEMS, since these households are not at all or only to
a small amount capable of providing flexibility towards the
grid – according to the randomly selected device penetration
defined in Table 2. This result is plausible, since according
to the specified device penetration probabilities (column 2),
30% of the households do not contain devices which offer
a large flexibility potential such as the heat pump, the elec-
tric vehicle, and the battery. All other homes are capable of
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Fig. 8 Optimized price signals for aggregated load profile shaping over 24h. Left case study A; right case study B. For case study A very moderate
price variations suffice to yield a constant load profile in the time interval

Fig. 9 Distribution of cost savings in case study B with respect to a
reference scenario with maximum internal consumption, but otherwise
without incentives onwhen and howmuch power is used (constant tariff
situation). Relative cost savings refer to average costs of all households
resulting from the reference scenario. The average saving for the indi-
vidual households is 14.2%

optimizing their energy cost by supporting the grid with their
flexibility. On average, overall cost savings of 14.2% can be
obtained.

5 Conclusion

Case studies A and B presented in Sect. 4 demonstrate
high controllability of the aggregated load profile solely
based on common price incentives for a statistical sample
of households. The flexibility required for load management
is provided by HEMS which schedule local energy devices
with the aim ofminimizing energy cost in households. Stabil-
ity of control is ensured and load synchronization is avoided
by applying a price structure consisting of several progressive
price tiers in dependence of consumed or generated power.
The method is based on distributed control algorithms in
each household, therefore leaving full freedom of control on

the side of the home owner. Furthermore, the method is just
in the sense that the power levels of the price tiers can be
defined relative to average consumption and/or production
of the household. Another advantage is the technology inde-
pendent, price based interface between the energy provider
and the supplied households. The common day-ahead energy
tariff can be processed by any HEMS enabling interoperabil-
ity between various HEMS manufacturers.
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