
Robotic Path Planning by Q Learning and a

Performance Comparison with Classical Path

Finding Algorithms

Phalgun Chintala, Rolf Dornberger, and Thomas Hanne
University of Applied Sciences and Arts Northwestern Switzerland, Basel/Olten, Switzerland

 Email: thomas.hanne@fhnw.ch

Abstract—Q Learning is a form of reinforcement learning

for path finding problems that does not require a model of

the environment. It allows the agent to explore the given

environment and the learning is achieved by maximizing the

rewards for the set of actions it takes. In the recent times, Q

Learning approaches have proven to be successful in

various applications ranging from navigation systems to

video games. This paper proposes a Q learning based

method that supports path planning for robots. The paper

also discusses the choice of parameter values and suggests

optimized parameters when using such a method. The

performance of the most popular path finding algorithms

such as A* and Dijkstra algorithm have been compared to

the Q learning approach and were able to outperform Q

learning with respect to computation time and resulting

path length.

Index Terms—reinforcement learning, Q learning, robot

navigation, path planning, path finding, shortest path

I. INTRODUCTION

Path planning is a fundamental and critical task of

moving robots. The main objective of path finding is to

find a safe trajectory for the mobile robot to move it from

the starting point to the ending point without any

collision with obstacles. Finding paths with minimal time

and energy consumption is always desired [1].

With emerging needs and growth of technology, robots

have been employed for a large variety of applications

ranging from aerial photography, bomb disposal, mining,

nuclear applications to performing medical interventions.

Depending on the environment, path finding can be

categorized into 1) Global path planning; in a static and

structured environment where the robot already knows

the location of obstacles and a model of the environment;

2) Local path planning; in dynamic environments, where

the robot explores the given environment by taking

actions and then uses the information for path planning

[2]. Dijkstra algorithm and A* algorithm are the two most

popular algorithms for path planning in static

environments which compute an optimal global path

since the position of the obstacles is pre-known [1].

While the supervised learning algorithms and sequential

search-based navigation approaches are relatively easy to

Manuscript received January 14, 2022; revised April 1, 2022.

implement and are effective to find an optimal path in

static environments, most of the approaches fail in real

world applications. Studies indicate that external

influences such as noise or closely spacing of obstacles

would also have a negative impact on the performance of

such algorithms [1].

To tackle complexities and the unpredictable nature of

the environments, heuristic path planning methods have

emerged which emulate human like behavior-based

characteristics. Literature indicates that approaches based

on Artificial Neural Network (ANN), Genetic Algorithms

(GA), Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO), Wavelet, Fuzzy Logic (FL) have

been frequently used to tackle such scenarios [3].

Reinforcement Learning (RL) is one such heuristic

approach developed by mimicking the learning behavior

of animals and humans – by interactions. It is about

learning what to do and how to proceed to obtain

maximum rewards from the environment. Another

important aspect of RL is that it considers the whole

problem of the environment and thus addresses how the

local paths planned at every step could fit into the larger

picture of the path planning. So the actions at every step

may not only influence the rewards at that step, but also a

set of subsequent rewards that would be obtained in

future iterations by taking that step [4]. In its simplest

form, RL can be treated as a sequence of Markov

decision processes which capture the key aspects of a

learning agent, i.e., reward, action, and goal. The

performance of a RL algorithm hugely depends on two

factors used in the strategy of the algorithm known as 1)

exploration and 2) exploitation. Exploration refers to

selecting an action with a probability value greater than

zero in every state to learn about the environment.

Exploitation is using the current knowledge of the agent

to achieve good performance by selecting particular (e.g.,

greedy) actions [5].

Q learning is a promising off-policy variant of RL,

where the value functions can be updated by hypothetical

actions. This is the major difference when compared to

RL, where the value functions can only be updated based

on experience [6]. In recent times, algorithms based on Q

learning have been successfully used for short-term and

long-term planning and decision-making processes in

autonomous navigation tasks with minimal assumptions.

373

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 6, June 2022

© 2022 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.11.6.373-378

Corresponding author *: Thomas Hanne

The algorithm in this paper uses a greedy policy, which

means that the expected highest reward for a given action

is chosen at every step.

The paper is structured as follows: A description of the

problem and the suggested optimization method

including chosen parameters will be given in Section II.

Section III presents the results and a related discussion.

Conclusions are presented in Section IV.

II. DESCRIPTION OF THE OPTIMIZATION PROBLEM

A. Problem Model

The problem model using the conventional algorithm-

based approaches involves decomposing the given

environment to a grid graph. The starting and the ending

point need to be defined. The static locations of the

obstacles need to be specified on the grid. The distances

such as Manhattan distance or Chebyshev distance are

used to compute the path of the robot on the grid. The

objective function is based on minimizing distance and

maximizing a reward value at each step [1][7]. The

implementation and results of the classical path finding

approaches are discussed in Section III of the paper.

For evaluating the Q learning in this paper, the

environment has been simulated as discrete, non-

overlapping grid, each grid position representing a state

that the agent could take. The robot can move either in a

straight line or diagonally to left, right, up, or down, a

grid position can hence have eight possible neighbors

which a robot can transit to. Fig. 1 shows a sample 20x20

grid, the yellow positions indicate the spaces into which

the robot can navigate, and the dark positions represent

the obstacles in the environment. In general, from the

starting position SP to the ending position EP, several

valid paths (at least one) are possible.

Figure 1. Robot environment.

Following [3][8][9][10][11] used for solving similar

path planning problems, each decision step is modelled as

a Markov Decision Process (MDP) and the resulting

combination of all steps behave as a Markov Chain

[8][10].

The MDP at every step can be represented by the

quintuple set of {S, A, Pa, Ra, 𝛾, 𝜋}, where:

• S denotes the set of all possible states s,

• A denotes the set of all possible actions a,

• Pa (s, s’) is the probability that action a in state s at

time t, will lead to a state s’ at time t+1,

• Ra (s, s’) is the immediate reward after the agent

moves from state s to state s’,

• γ is the discount factor with 0 < γ < 1,

• π (at | st) denotes the policy of the agent depending

on the action a and state s at time t,

The state and action spaces are finite and belong to the

set of real numbers. The policy function π is a mapping

from the state space to the action space. The set of these

state-action pairs are stored in a table, so that the

algorithm can learn from the consequence of previous

actions in the future (exploitation) [5].

The robot interacts with the environment: From a

given state s and a time t it chooses an action a from the

possible set of actions based on a policy π to move to a

state s’ and receives a reward. Since the robot is limited

at every time t by the set of actions and states from which

it can select, these are two main constraints in the

optimization problem, which will be further discussed in

the coming sections.

B. Optimization Method

The main optimization objective is to choose a policy π

that will maximize the rewards at the current step and

also the expected sum of rewards from the future steps.

The state value action function Qπ(s, a) measures the sum

of the rewards from state s after taking an action a

following a policy π. The common idea in

[3][8][9][10][11] involves the robot acting autonomously

in a given environment and updating the policy in a way

that Qπ(s, a)→ Q*(s, a), where Q*(s, a) represents the

maximal reward that can be obtained by following a

policy at that given state.

Q*(s, a) = max Qπ(s, a)

The update equation for Q learning at every time step t

can then be formulated as:

Qt(s , a) = Qt-1(s, a) + α[R(s, a) + γ max Q’ (s’, a’) – Qt-1(s,

a)]

where:

• Qt (s, a) denotes the updated new Q value in the

table,

• Qt-1(s, a) denotes the previously recorded Q

value,

• α denotes the learning rate,

• R(s, a) denotes the immediate reward obtained,

• γ denotes the discount factor,

• max Q’ (s’, a’) denotes the maximum expected

reward,

• Q’ (s’, a’) = E[Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4

+ γ4Rt+5 + ……]

The algorithm gives the importance to the actions

which can yield a maximum immediate reward, as the

future rewards are discounted exponentially by a factor of

γ (0 < γ <1).

374

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 6, June 2022

© 2022 Int. J. Mech. Eng. Rob. Res

Algorithm: Q Learning

Choose parameters α ∈ (0,1], γ ∈ (0,1);

Initialize Q(s, a), for all s ∈ S, a ∈

A(s) arbitrarily; Initialize the current

state s (starting position); Loop for

every iteration:

Choose an action a, by using the

greedy policy ɛ; Observe the reward r

∈ 𝑅(s,a);

Observe the current transitioned state s’;

Update the Q value in the table using the equation

Qt(s , a) = Qt-1(s, a) + α[R(s, a) + γ max Q’ (s’, a’) – Qt-1(s,

a)]

Repeat until the s is the end position

The robot can use extensive exploration or a greedy

strategy to maximize the reward values at every step.

However, too much exploration could have a negative

impact on the learning speed and time taken for planning

the successive steps. Strategically, these could be used as

the regularization parameters to prevent excessive

exploration [12].

C. Parameter Selection

Learning Rate (α): The learning rate parameter α needs

to be carefully selected to avoid a too quick convergence

and thus to allow optimal learning rates in the

environment. Selecting the α close to zero (α > 0 and α

<<1) causes the learning to occur very slowly, which

means that the algorithm will tend to be inefficient in

navigation tasks where quick response rates are desired.

Choosing α close to 1 causes the learning process to be

very quick and the paths may not be optimal [4].

Discount factor (γ): The discount factor γ determines

the importance of the consequences of the future actions

and rewards. Choosing γ close to zero will make the

algorithm short-sighted, allowing only local path planning

with less regard to how these paths would fit into the

overall solution. Choosing γ close to 1 makes the

algorithm strive for higher long-term rewards and the

chosen local paths can be far from optimal. γ values

above 1 are excluded, as the agent can never converge to

a solution as future rewards become infinite [13].

Q value initialization: The initial Q values can have a

significant impact on the convergence of the algorithm.

The initialized value (Qi) when compared to a Q value in

the future (Q∞) will make the states already visited either

more or less attractive. If Qi < Q∞ it would make the

agent explore less in the beginning as the unvisited states

are less unattractive than the current state, which slows

down the learning process. If Qi > Q∞, the robot exhibits

a systemic exploration behavior, as the unvisited states

are more attractive than the visited ones [14].

Policy (ɛ): The policy selection is crucial in balancing

the trade-off between exploration and exploitation.

Choosing a greedy policy ɛ will enable the robot to always

select the action with the highest estimated reward. This

policy ensures that sufficient iterations are carried out. As

a consequence, each action will be tried out multiple times,

thus arriving at an optimal action. A disadvantage of

choosing a greedy ɛ policy is that the algorithm favors the

random and known actions equally. To counteract this, a

softmax based ɛ policy has been used recently. A softmax

policy assigns a weight to each of the actions based on

their action-value estimate; hence, bad random actions

are unfavorable and will be avoided [15] [16].

III. RESULTS & DISCUSSION

A. Q Learning

Two environments of different grid sizes 20x20 and

10x10 with different sets of obstacles have been setup in

MATLAB to test the performance of the Q learning

algorithm. For a given (x, y) on the grid the state no. can

be expressed as:

state no. = (x-1) * rowsize + y

where x is the grid position in the x direction; y is the grid

position in the y direction; rowsize is the length of the

row.

All the obstacles have the dimension of one grid cell

and hence can be arranged in walls, corners, or complex

labyrinths. These simulations were only performed with

static obstacles. On a 10x10 grid with obstacles not

spaced very closely, as shown in Fig. 2, the algorithm

converges in the optimal case to a final path within 32

iterations across 10 instances of the same simulation. For

the next simulation, a labyrinth styled 20x20 grid as

shown in Fig. 3, has been used, the algorithm converged

after 62 iterations with a final step size of 26.

On a 20x20 grid, with the values of the Q initialized to

zero (Qi < Q∞) the average number of explored steps in

the first five iterations were 302, compared to 335 when

Q values were initialized with values from a normal

distribution over 10 instances. The behavior remained

consistent across different grid sizes, with the algorithm

taking an average of 26 steps in the first five iterations,

compared to 41 steps when initialized with non-zero

random values.

Figure 2. 10x10 grid simulation results.

375

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 6, June 2022

© 2022 Int. J. Mech. Eng. Rob. Res

Figure 3. 20x20 grid simulation results.

As described in Section 2, choosing a reward discount

factor (γ >1) resulted in an infinite expected reward and

the algorithm did not converge to a solution. The

simulation has been performed over 10 instances and at

every single instance the algorithm exhibited non-

convergence as shown in Fig. 4(a). Fig. 4(b) shows the

final path attained for a discount factor of γ = 0.1. Since

the future rewards are far more discounted, the final path

is far less optimal compared to that in Fig. 3(c).

The average time of convergence over 10 iterations

with γ = 0.9 was evaluated with different learning rates

over the two different grid sizes. In both cases, as shown

in Table I, the time of convergence decreases with an

increase in α. In the simulations with α = 0.1, the

algorithm has not yielded to an optimal global path.

Figure 4. Results for different γ values.

TABLE I. TIME OF CONVERGENCE FOR DIFFERENT LEARNING RATES

Grid
Size

(α = 0.1) (α = 0.5) (α = 0.9)

10x10 14.9 sec 10.8 sec 7.4 sec

20x20 97.1 sec 52.3 sec 23.2 sec

B. Path Finding with A* and Dijkstra Algorithms

In the following, the classical path finding approaches

A* and Dijkstra are compared on the same environments

(example grids with static obstacles) with the previously

explained Q learning algorithms. The average

convergence time and the final number of steps (path

length) over 10 instances were considered the primary

evaluation criteria in the comparison.

Figure 5. Comparison of paths resulting from Q learning, A*
algorithm, and Dijkstra algorithm.

TABLE II. PERFORMANCE EVALUATION ON A 10X10 GRID

Grid

Size(10x10)
Q -

learning

A* algorithm Dijkstra

algorithm

Time 9.1 sec 1.85 sec 1.21 sec

Steps 18 7 9

TABLE III. TIME OF CONVERGENCE FOR DIFFERENT LEARNING RATES

Grid

Size(20x20)
Q -

learning

A* algorithm Dijkstra

algorithm

Time 14.8 sec 2.46 sec 1.71 sec

Steps 35 6 7

In a static environment, with different grid sizes and

placement of obstacles, the performances of the A* and

Dijkstra algorithms are superior to the Q learning

approach proposed in the paper. A* algorithm, which is

an expansion of Dijkstra’s algorithm, presented the

shortest path (7 steps on a 10x10 grid and 6 steps on a

20x20 grid) in every instance. A* is successful in

decreasing the total number of states by presenting a

heuristic estimation of the cost from the current state

(including start position) to the end goal state (end

position). Dijkstra’s algorithm on the other hand, due to

the static nature of the environment in which the

simulations were conducted, needs the shortest times for

computing the path (1.21 sec on a 10x10 grid and 1.71

sec on a 20x20 grid). The algorithm implementation was

relatively simple and memory efficient compared to that

of Q learning.

376

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 6, June 2022

© 2022 Int. J. Mech. Eng. Rob. Res

IV. CONCLUSIONS

The Q learning algorithm proposed in the paper solves

a Markov Decision Process at every step by learning the

optimal state-action value function or Q-function for

solving a static path planning problem. The learning

process is close to that of living beings, as it is based on

the rewards or the consequence of actions that it takes at

every decision step. The algorithm is adaptive and does

not need large labeled datasets or the models of the

environment to be pre-known and can make intelligent

decisions in uncertain conditions. The algorithm also

allows off-policy learning and is convergent. However,

the algorithm is not memory efficient and is

computationally intensive compared to the classical path

finding approaches such as Dijkstra’s and A*. Given a

static and a known environment, it is preferable to use a

classical path finding approach as it is faster and performs

effectively. Such classical path planning algorithms either

converge to a solution or confirm that a solution is

unachievable. Hybrid based approaches such as D*, short

for dynamic A*, can cope with such shortcomings of

classical path planners and the unpredictability of the

dynamic environments.

During this study, the following outlook has emerged:

Several variations in Q learning such as hyper Q learning,

Bayesian Q learning, relative Q learning have recently

been proposed to improve the convergence time,

maximize the performance, and reduce the number of

steps to reach the optimal Q-value. The algorithm is also

limited in its application to discrete spaces, and powerful

function approximators need to be applied to extend its

use to continuous environments. Here, Deep Q learning

approaches can address the issue of the application of Q

learning to continuous environments, which is an

important step towards solving many real-world problems.

Evaluating the performance of such algorithms in

comparison to the hybrid classical path-based approaches

is one of the future research scopes that will continue this

research.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

The research topic has been specified and supervised

by Rolf Dornberger and Thomas Hanne. Phalgun

Chintala conducted the research project including

implementation and numerical experiments. and provided

a first draft of the paper. The document was further

revised by Rolf Dornberger and Thomas Hanne. All

authors had approved the final version.

REFERENCES

[1] P. Mehta, H. Shah, S. Shukla, and S. Verma, “A review on

algorithms for pathfinding in computer games,” in Proc. IEEE
Sponsored 2nd International Conference on Innovations in

Information Embedded and Communication Systems ICIIECS, vol.

15, 2015.
[2] A. Muhammad, M. Ali, and I. Shanono, “Path planning methods

for mobile robots: A systematic and bibliometric review,”

ELEKTRIKA- Journal of Electrical Engineering, vol. 19, pp. 14-

34, 2020.

[3] M. W. Otte, “A survey of machine learning approaches to robotic
path-planning,” University of Colorado at Boulder, Boulder, 2008.

[4] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction, MIT Press, 2018.

[5] M. Coggan, Exploration and exploitation in reinforcement

learning. Research supervised by Prof. Doina Precup, CRA-W
DMP Project at McGill University, 2004.

[6] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine
Learning, vol. 8, no. 3-4, 1992, pp. 279-292.

[7] I. Altaharwa, A. Sheta, and M. Alweshah, “A mobile robot path

planning using genetic algorithm in static environment,” Journal
of Computer Science, vol. 4, no. 4, pp. 341-344, 2008.

[8] M. M. U. Chowdhury, F. Erden, and I. Guvenc, "RSS-Based Q-
Learning for Indoor UAV Navigation," in Proc. MILCOM 2019 -

2019 IEEE Military Communications Conference (MILCOM),

2019, pp. 121-126.
[9] J. Xin, H. Zhao, D. Liu, and M. Li, “Application of deep

reinforcement learning in mobile robot path planning,” in Proc.
2017 Chinese Automation Congress (CAC), Jinan, China, 2017, pp.

7112-7116.

[10] X. Lei, Z. Zhang, and P. Dong, “Dynamic path planning of
unknown environment based on deep reinforcement learning,”

Journal of Robotics, vol. 2018, 2018.
[11] H. Quan, Y. Li, and Y. Zhang, “A novel mobile robot navigation

method based on deep reinforcement learning,” International

Journal of Advanced Robotic Systems, vol. 17, no. 3, May 2020.
[12] S. Dasgupta, “Analysis of a greedy active learning strategy,”

Advances in Neural Information Processing Systems, vol. 17, pp.
337-344, 2005.

[13] S. Russell and P. Norvig, Artificial Intelligence: A Modern

Approach, 3rd edition Prentice Hall/Pearson Education, Upper
Saddle River, 2010.

[14] H. Shteingart, T. Neiman, and Y. Loewenstein, “The role of first

impression in operant learning,” Journal of Experimental

Psychology: General, vol. 142, no. 2, p. 476, 2013.

[15] M. Tokic and G. Palm, “Value-difference based exploration:
adaptive control between epsilon-greedy and softmax," in Proc.

Annual Conference on Artificial Intelligence. Springer, Berlin,
Heidelberg, 2011.

[16] O. Nachum, et al., “Bridging the gap between value and policy

based reinforcement learning,” arXiv preprint arXiv:1702.08892,
2017.

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Phalgun Chintala

is currently pursuing his

master’s degree in Business Information

Systems at the School of Business of the

University of Applied Sciences and Arts
Northwestern Switzerland FHNW in Basel,

Switzerland.

 He worked as a machine learning engineer
at Max Planck Institute of Psychiatry

(Munich)

and Think Ahoy

(Wiesbaden)

before
cofounding an

ecommerce startup Chicken

Basket in India. His current research interests include artificial

intelligence

particularly

related to business applications, robotics,

image

analysis

and processing.

Rolf Dornberger, born in Germany, studied

Air-

and Aerospace Engineering (diploma

1994) at universities in Stuttgart (Germany),
Barcelona (Spain) and Grenoble (France). He

holds a PhD (1998) in Air-

and Aerospace

Engineering from the University of Stuttgart,

Germany, in the field of numerical methods

for modelling and simulation, and an
international University Teaching Certificate

from the University of Basel, Switzerland
(2017).

377

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 6, June 2022

© 2022 Int. J. Mech. Eng. Rob. Res

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

After his PhD, he worked in industry in different management

positions as a Consultant, IT Officer and Senior Researcher in different

international engineering, technology, and IT companies in the field of
energy, software, IT, and airline business in Switzerland. He taught

part-time at universities in Zurich and Stuttgart. Today, he is Professor
and Head of the Institute for Information Systems at the School of

Business of the University of Applied Sciences and Arts Northwestern

Switzerland FHNW in Basel, Switzerland. Additionally, he is a guest
lecturer at the Faculty of Business and Economics of the University of

Basel, Switzerland. He is the (co-)author of more than a hundred
scientific publications. His current research interests include artificial

intelligence, particularly the nature-inspired methods of computational

intelligence, modelling, simulation and optimization, robotics, human-
machine interaction, and innovation management.

Prof. Dr. Dornberger is a member of Swiss Informatics and Rotary,
has been vice president and board member of two Swiss associations,

and has/had various commitments as a member of international and

technical program committees, book author and editor (Springer) and
journal editor, honorary chairman, session leader, organizer of special

sessions, reviewer, invited keynote speaker.

Thomas Hanne

received master's degrees in
Economics and Computer Science, and a PhD

in Economics. From 1999 to 2007 he worked
at the Fraunhofer Institute for Industrial

Mathematics (ITWM) as

senior scientist.

Since then, he is Professor for Information
Systems at the University of Applied

Sciences and Arts Northwestern Switzerland
and Head of the Competence Center Systems

Engineering since 2012. Thomas Hanne is

author of more than 160 journal articles,

conference papers, and other publications and editor of several journals

and special issues. His current research interests include computational
intelligence, evolutionary algorithms, metaheuristics, optimization,

simulation, multicriteria decision analysis, natural language processing,

systems engineering, software development, logistics, and supply chain
management.

378

International Journal of Mechanical Engineering and Robotics Research Vol. 11, No. 6, June 2022

© 2022 Int. J. Mech. Eng. Rob. Res

