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Abstract

The aim of this study was to separately analyze the role of featural and configural face representa-

tions. Stimuli containing only featural information were created by cutting the faces into their parts

and scrambling them. Stimuli only containing configural information were created by blurring the

faces. Employing an old-new recognition task, the aim of Experiments 1 and 2 was to investigate

whether unfamiliar faces (Exp. 1) or familiar faces (Exp. 2) can be recognized if only featural or

configural information is provided. Both scrambled and blurred faces could be recognized above

chance level. A further aim of Experiments 1 and 2 was to investigate whether our method of

creating configural and featural stimuli is valid. Pre-activation of one form of representation did not

facilitate recognition of the other, neither for unfamiliar faces (Exp. 1) nor for familiar faces (Exp.

2). This indicates a high internal validity of our method for creating configural and featural face

stimuli. Experiment 3 examined whether features placed in their correct categorical relational

position but with distorted metrical distances facilitated recognition of unfamiliar faces. These faces

were recognized no better than the scrambled faces in Experiment 1, providing further evidence that

facial features are stored independently of configural information. From these results we conclude

that both featural and configural information are important to recognize a face and argue for a

dual-mode hypothesis of face processing. Using the psychophysical results as motivation, we propose

a computational framework that implements featural and configural processing routes using an

appearance-based representation based on local features and their spatial relations. In three computa-

tional experiments (Experiments 4–6) using the same sets of stimuli, we show how this framework

is able to model the psychophysical data.
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1. Separate coding of featural and configural information in face perception

Faces are a complex object type, and it is surprising how well they are recognized

by human beings. Even after more than 50 years a face can be recognized with 90%

accuracy (Bahrick, Bahrick, & Wittlinger, 1975). Different ways have been discussed

how the complex information contained in a face may be processed. Many authors have

suggested that faces are processed holistically (e.g., Farah, Tanaka, & Drain, 1995;

Farah, Wilson, Drain, & Tanaka, 1998; Tanaka & Farah, 1993; Tanaka & Sengco,

1997). Various interpretations of holistic face processing have been suggested (for

reviews see Maurer, Le Grand, & Mondloch, 2002; Schwaninger, Carbon, & Leder,

2003; Schwaninger, Wallraven, Cunningham, & Chiller-Glaus, 2006). The pure holistic

view of face recognition claims that faces are represented as whole templates without

explicitly storing the facial parts (Tanaka & Farah, 1993; see also Farah et al., 1995).

Tanaka and Farah (1993) trained participants in recognizing upright faces. In the experi-

mental phase, two faces which differed either in the shape of the eyes, nose, or mouth

was simultaneously presented. In a second experimental condition the eyes, nose, or

mouth was presented in isolation, that is, without the facial context. Participants had to

judge which of these faces appeared in the training phase. The authors found that it was

more difficult to recognize a part of a previously learned face when it was presented in

isolation than when it was embedded in the facial context. This difficulty to recognize

isolated parts was interpreted in favor of a holistic view of face processing, as parts do

not seem to be explicitly represented.

Tanaka and Sengco (1997) hold a slightly different view of holistic face processing. They

found that featural information (part-based information) and configural information are

combined into holistic face representations. Whereas Tanaka and Farah (1993) and Farah

et al. (1995) claimed that faces are represented as unparsed wholes without any representa-

tions of parts, the findings of Tanaka and Sengco (1997) concede that featural and configural

information are first represented separately before they are integrated into a holistic

representation (see also Rhodes, Brake, & Atkinson, 1993).

Maurer et al. (2002) suggest that holistic processing is one type of configural processing

in which the features are ‘‘glued together’’ into a whole gestalt. According to Maurer and

colleagues, configural processing refers ‘‘to any phenomenon that involves perceiving rela-

tions among the features of a stimulus such as a face’’ (Maurer et al., 2002; p. 255). This is

similar to the featural-configural hypothesis postulated much earlier (e.g., Bruce, 1988;

Sergent, 1984). According to Bruce (1988) configural information refers to the ‘‘spatial

interrelationship of facial features’’ (p. 38), that is, the distances between features such as,

for example, eyes, mouth, or nose. The spatial interrelationship of facial features was further
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differentiated by Diamond and Carey (1986), who distinguished first-order and second-order

relational information. First-order relational information refers to the basic arrangement

of the parts (e.g., the nose lies between the eyes), whereas second-order relational

information means the exact metric distances between the features. As all faces share the

same first-order relational information, more importance is ascribed to second-order

relational information.

In the present study we used scrambled, blurred, and intact versions of faces to investigate

whether human observers only process faces holistically, or whether they encode and store

the local information in facial parts (featural information) as well as their spatial relationship

(configural information). These manipulations have established validity for looking at fea-

tural and configural face processing. For example, Collishaw and Hole (2000) showed that

inversion had no effect on the recognition of scrambled faces, but reduced the recognition of

blurred faces to chance level (see also Lobmaier & Mast, 2007). Inversion is universally

accepted as predominantly affecting configural but not featural information (e.g., Bartlett &

Searcy, 1993; Carey & Diamond, 1977; Diamond & Carey, 1986; Searcy & Bartlett, 1996;

Sergent, 1984; for a review see Schwaninger et al., 2003; Leder & Bruce, 2000). The fact

that inversion only affected blurred faces, but not scrambled faces, can be taken as evidence

in favor of scrambling and blurring as manipulations to separately investigate featural and

configural processing. Other authors have often separately investigated featural and confi-

gural processing by directly altering the facial features or their spatial positions. However,

the effects of such manipulations are not always perfectly selective. For example, altering

featural information by replacing the eyes and mouth with the ones from another face could

also change their spatial relations (configural information) as mentioned by Rhodes et al.

(1993). Rakover (2002) has pointed out that altering configuration by increasing the inter-

eye distance could also induce a part-change, because the bridge of the nose might appear

wider. Such problems were minimized in our study by using scrambling and blurring proce-

dures that allowed investigating the role of featural and configural information separately.

While scrambled faces will evidently still contain some configural information and blurring

will not entirely remove featural information, these manipulations seem most appropriate

for the present studies, because they reduce configural or featural information, instead of

altering it.

The current study extends previous research using these manipulations (e.g.,

Collishaw & Hole, 2000; Davidoff & Donelly, 1990; Sergent, 1985) by ensuring that

each procedure does effectively eliminate configural or featural processing. The aim of

Experiments 1 and 2 was to get a clearer view of whether featural and configural repre-

sentations are independent in familiar and unfamiliar face recognition. In Experiment 3

we separately scrutinized the role of first-order relational information and second-order

relational information when recognizing a previously learned face. Finally, we develop a

computational model that implements featural and configural processing routes using an

appearance-based representation based on local features and their spatial relations. In

three computational experiments (Experiments 4–6) using the same sets of stimuli as in

Experiments 1–3, we show that this framework is able to provide a good model of the

psychophysical data.
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2. Experiment 1

Several studies have suggested that two kinds of face representations are coded in face

perception: configural and featural representations (e.g., Bartlett, Searcy, & Abdi, 2003;

Cabeza & Kato, 2000; Collishaw & Hole, 2000; Hayward, Rhodes, & Schwaninger,

2008; Leder & Bruce, 1998; Schwaninger, Lobmaier, & Collishaw, 2002; for an over-

view see Schwaninger et al., 2003, 2006). But are these representations independent of

each other?

We used scrambled and blurred faces to investigate whether there is a ‘‘transfer effect’’

from featural to configural face processing, and vice versa. Testing participants in both the

scrambled and blurred condition in successive blocks may reveal whether featural and confi-

gural representations are based on independent processes. If a transfer effect can be found

(i.e., if the condition carried out second in Experiment 1 shows better performance), this

would support the idea of interacting featural and configural representations. If, on the other

hand, no effect of block order can be found, this would be consistent with two independent

types of representations.

Alternatively, the performance could decrease in the condition carried out later. This

would suggest that stored representations are unstable. If the shift from featural to config-

ural processing with growing familiarity is not due to a shift in the encoding of featural

and configural information, but to the growing stability of the configural representations, a

decreasing performance in the blurred condition could be expected for the group tested on

blurred faces after the scrambled condition.

2.1. Method

2.1.1. Participants
Twenty-four participants (12 male and 12 female) ranging in age from 20 to 46 years

voluntarily took part in Experiment 1. All participants were first-year students of psychology

at the University of Zurich. The participants were randomly assigned to one of two experi-

mental groups (see below).

2.1.2. Apparatus
The experiment was run on a Windows PC using Superlab Pro 2.01. The experiment took

place in a dimly lit room where participants were seated on a height-adjustable chair and

responded by pressing one of five buttons on a Cedrus Response Box (RB-610). The stimuli

were presented on a 17¢¢ screen and appeared approximately 10 cm wide. A headrest

ensured that the participants were at a viewing distance of 100 cm. The faces thus subtended

approximately 6� horizontally.

2.1.3. Stimuli
The stimuli were created from photographs of 50 faces taken at Zurich University. Ten

faces (five male, five female) were used as target faces and 40 faces (20 male, 20 female) as

distractors. The faces were prepared as follows using Adobe Photoshop 6.0. The face was
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extracted (i.e., without ears, neck, and hair) using the burn tool and was placed on a black

background. All faces were scaled to a standard size of 300 pixels across the width of the

face at pupil level. These intact faces were used in the learning phase. Fig. 1A shows an

example of an intact face. The blurred stimuli were created by transforming the intact faces

to black and white pictures and applying a Gaussian filter provided by Photoshop 5.5 with a

radius of 8 pixels. An example stimulus is shown in Fig. 1B. Scrambled faces were cut into

their parts1 using the polygonal lasso tool with a 2-pixel feather. These parts were then

scrambled in four different versions which appeared randomly. Each version was arranged

so that no part was situated either in its natural position or in its natural first-order relation

to its neighboring part. The parts were distributed as close to each other as possible, in order

to keep the image area approximately the same size as the whole faces. An example of a

scrambled stimulus can be seen in Fig. 1C.

Finally, control stimuli were created by simultaneously blurring and scrambling the parts

as described above. The rationale here was that if configural and featural information is

removed from a face, it will no longer be recognized above chance level. Additionally, if

scrambled-blurred faces are no longer recognized above chance level this will mean that we

applied sufficient blur to effectively reduce configural information. We therefore used the

control stimuli to ensure that we used an appropriate blur level to reduce featural informa-

tion. Fig. 1D shows an example of the control faces.

2.1.4. Task and procedure
Each participant completed four experimental conditions (blocks). Block 1 tested the

recognition of intact, previously learned unfamiliar faces and was used as the baseline con-

dition. In Block 2 recognition of blurred faces was tested, and Block 3 tested scrambled

faces. In Block 4 the faces were both scrambled and blurred and served as control stimuli.

Block 1 was always first, and Block 4 was always last. The order of Blocks 2 and 3 was

counterbalanced across participants. Group 1 was tested with blurred faces first; Group 2

was tested with scrambled faces first.

Ten faces were chosen as target faces. None of these target faces were familiar to the par-

ticipants. In each block the participants were tested on the same 10 target faces among 10

distractor faces which were different in each block. The distractor faces were counterbal-

anced between participants and across conditions, so that every distractor face appeared

A B C D E

Fig. 1. Sample stimuli. (A) Intact face, as used during the familiarizing phase and in the baseline condition of

Exp. 1 and 2; (B) scrambled face; (C) blurred face; (D) scrambled-blurred face; (E) scrambled version used in

Exp. 3, with the categorical relations left intact.
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only once for each participant, but appeared equally often in each block over the whole

experiment. The software recorded the participants’ answers and reaction times.

The study phase consisted of two identical stages. The 10 target faces were successively

presented for 10 s each. In the second stage the faces were presented again in the same

order. After the study phase, participants were first made familiar with the test procedure.

They underwent a short demonstration block, which was a shortened version of the baseline

condition (three targets, three distractor faces). None of the faces used in this block were

used in any of the experimental conditions. After the demonstration block, participants were

asked to complete all four test conditions.

In each block participants were shown 20 faces (10 targets, 10 distractors). Each face

remained visible until the participant responded. Participants were requested to respond as

quickly as possible by pressing one of two keys using the left and right hand. Which hand

was used for new or old faces was counterbalanced across participants. After each block,

participants were able to take a short break. They could start the next block by pressing any

button on the response box.

2.1.5. Analyses
A mixed-participants design was used, with condition (baseline, scrambled, blurred, con-

trol) as within-participants factor and block order as between-participants factor. Both

d-prime (Green & Swets, 1966) and reaction times (RTs) were analyzed. For each condition

a one-sample t test was carried out on the d-prime values in order to check the difference

from chance level (d¢ = 0). A two-way analysis of variance (anova) was carried out with

condition (baseline, blurred, scrambled, control) as within-participants factor and block

order (scrambled-blurred, blurred-scrambled) as between-participants factor.

A three-way analysis of variance (anova) was run for the reaction times with condition

(baseline, blurred, scrambled, control) and newness (target face, new face) as within-

participants factors and block order (scrambled-blurred, blurred-scrambled) as between-

participants factor.

2.2. Results

2.2.1. D-prime
The mean d-prime values were 4.0 for intact faces, 2.72 for blurred faces, 1.91 for scram-

bled faces, and 0.14 for scrambled-blurred faces. The one-sample t tests revealed a

significant difference from 0 for intact faces, t(23) = 25.58, p < .001, blurred faces,

t(23) = 10.6, p < .001, and for scrambled faces, t(23) = 9.45, p < .001 (all two-tailed).

Scrambled-blurred faces were not recognized above chance, t(23) = 0.97, p = .35 (two-

tailed). The anova revealed a main effect of condition, F(3, 66) = 85.69, MSE = 0.73,

p < .001. Post-hoc pairwise comparisons (Bonferoni corrected) revealed that all conditions

differed significantly from each other (all p < .001, except for comparison blr-scr p > .05).

The effect of block order was not significant, F(1, 22) = 2.39, MSE = 1.11, p = .14. The

interaction between condition and block order was significant, F(3, 66) = 3.51,

MSE = 0.73, p < .05. The results are depicted in Fig. 2.
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2.2.2. Reaction times
Reaction times revealed a significant effect of condition, F(3, 60) = 37.31, MSE =

2,858,084.72, p < .001, a significant effect of novelty, F(1, 20) = 5.1, MSE = 574,692.19,

p < .05, and a significant condition · novelty interaction, F(3, 60) = 5.65, MSE =

341,319.43, p < .01. Post-hoc pair wise comparisons (Bonferoni corrected) revealed that

intact faces were recognized marginally faster than blurred faces (p = .055), but signifi-

cantly faster than scrambled faces and scrambled-blurred faces (both p > .001). However,

scrambled faces were not recognized faster than scrambled-blurred faces. There was no

effect of block order and none of the interactions with block order were significant. There-

fore, RTs were pooled across groups (block order scr-blr vs. blr-scr) for calculating mean

values. The mean reaction times are shown in Fig. 3.

Fig. 2. Unfamiliar face recognition: D-prime values for all conditions of both groups. Group 1 was tested in the

blurred condition before the scrambled condition; Group 2 carried out the scrambled condition before they were

tested with blurred faces. The error bars depict standard deviations.

Fig. 3. Unfamiliar face recognition: reaction times for targets and distractors. The error bars depict standard

deviations.
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2.3. Discussion

The first aim of the study was to assess whether participants were able to recognize

unfamiliar faces on the basis of either featural or configural information. Scrambling and

blurring were used to isolate each type of information. The t tests of the d-prime values

revealed that faces could be reliably recognized on the basis of isolated configural and fea-

tural information, supporting a model involving two different face representations. When

both types of information were eliminated (i.e., when faces were scrambled and blurred at

the same time) faces were no longer recognized above chance level. The fact that scram-

bled-blurred faces were only recognized at chance confirms that the blurring used in this

experiment effectively eliminated featural information and that scrambling eliminated

configural information.

The second aim of the study was to assess whether there were any transfer effects

between scrambling and blurring (i.e., facilitation for later-presented faces) and also the

stability of featural and configural cues over the course of the study. Results showed no

overall difference between the two groups differing in block order (scr-blr vs. blr-scr),

but did reveal a significant interaction of condition · block order. This was due to the

group tested on the blurred condition after the scrambled condition. This group per-

formed less accurately in the blurred condition than the group tested in the blurred condi-

tion first. This decreasing recognition performance was not found in the scrambled

condition. Why should configural memory fade while features are still remembered? A

hypothesis for this effect is that featural representations are formed more easily than

configural representations. In order to form reliable configural representations the faces

might have to be more familiar. Diamond and Carey (1986) claim that there is a featural

to configural shift in the course of expertise. Buttle and Raymond (2003) report that

configural information becomes more important with growing familiarity (see also Lob-

maier & Mast, 2007). Our data suggest that configural information of unfamiliar faces

can only be stored for a rather short time. An alternative explanation is that processing

featural information interferes with the representations of configural information: While

participants were dealing with the scrambled faces the configural representations might

have been weakened. However, if it is right that greater use of configural information is

associated with expertise, this decrease of recognition performance should no longer be

found for familiar face recognition.

Mean reaction time was shortest for the baseline condition, slightly longer for the blurred

condition, longer still for the scrambled condition, and longest for the scrambled-blurred

condition, explaining the main effect of condition. A target face was generally recognized

faster than a distractor face was rejected, as is evident from the significant effect of newness.

This could be due to identifying diagnostic characteristics in a target face. As soon as some-

thing familiar was detected, the ‘‘target’’ button might have been pressed. This was particu-

larly the case in the scrambled condition. Participants most likely scanned every single

part—to be sure that no feature was familiar—before pressing the ‘‘new’’ button. The fact

that the difference of reaction times was particularly large for the scrambled condition also

accounts for the significant condition · newness interaction. These results are consistent
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with the assumption of a slow serial search mechanism for matching parts versus a fast

parallel process for matching configural information.

3. Experiment 2

Expertise with an object class is known to enhance configural processing (e.g., Diamond

& Carey, 1986; Gauthier, Skludarski, Gore, & Anderson, 2000). Also, familiarity with indi-

vidual faces has been claimed to induce a shift from featural to configural processing (e.g.,

Buttle & Raymond, 2003; see also Lobmaier & Mast, 2007). Does configural processing

gain importance in familiar faces because the configural representations are more stable? To

our knowledge there is still sparse evidence on how the representation of faces changes with

growing familiarity. One possibility is that a quantitative explanation accounts for face

learning; that is, all aspects of the representation of the face are stored more accurately. A

number of authors have now also reported that familiar faces are processed in a qualitatively

different fashion than unfamiliar faces (e.g., Buttle & Raymond, 2003; Young, Hay,

McWeeny, Flude, & Ellis, 1985) with evidence for the increasing importance of internal

versus external facial features in familiar faces (Young et al., 1985), and an increasing sensi-

tivity to configural changes for famous faces (Buttle & Raymond, 2003).

Our aim in Experiment 2 was to use familiar faces as target faces to further investigate

the roles of featural and configural information in familiar face recognition, and to compare

familiar face processing with the results of Experiment 1. Furthermore, if a lack of familiar-

ity was the reason for the decreasing recognition performance with block order in the

configural condition of Experiment 1, then this effect should not be found for familiar face

recognition.

3.1. Method

3.1.1. Participants
Twenty-four participants ranging in age from 20 to 35 years took part in this experiment

for course credits. All were undergraduate students of psychology at Zurich University and

were familiar with the target faces. All reported normal or corrected-to-normal vision.

3.1.2. Apparatus, task, and procedure
The apparatus, task, and procedure were the same as in Experiment 1. The stimuli were

also the same, but all the targets were faces of fellow students and thus familiar to the

participants. The distractor faces were unfamiliar to the participants.

3.1.3. Analyses
The analyses were the same as in Experiment 1. Additionally, a two-way anova was

carried out on the d-prime values of Experiment 1 and 2 with familiarity (Exp 1, Exp 2) as

between-participants factor and condition (intact, scrambled, blurred, scr-blr) as within-

participants factor. Accordingly, a three-way anova comparing the RTs of Experiment 1 and
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2 was carried out with condition (intact, scrambled, blurred, scr-blr) and newness (target,

new) as within-participants factors and familiarity (Exp 1, Exp 2) as between-participants

factor.

3.2. Results

Mean d-prime values were 3.84 for intact faces, 3.74 for blurred faces, 2.42 for scrambled

faces, and 0.43 for scrambled-blurred faces. The one-sample t test revealed a significant dif-

ference from 0 for intact faces, t(23) = 22.91, p < .001, blurred faces, t(23) = 19.8,

p < .001, and for scrambled faces, t(23) = 10.89, p < .001 (all two-tailed). For scrambled-

blurred faces the t test was also significant t(23) = 2.41, p < .05 (two-tailed). The anova

revealed a main effect of condition, F(3, 66) = 92.9, MSE = 0.65, p < .001. The effect of

block order was not significant, F(1, 22) = 0.001, MSE = 1.6, p = .98. In contrast to Experi-

ment 1, the interaction between condition and block order was not significant in Experiment

2, F(3, 66) = 0.91, MSE = 0.65, p = .44. The results are shown in Fig. 4.

A planned two-sample t test was carried out on the d-prime values of the baseline and the

blurred condition, which revealed no significant difference between the two conditions,

t(23) = 0.38, p = .71 (two-tailed).

The anova comparing unfamiliar versus familiar face recognition (Experiment 1 vs.

Experiment 2) revealed a significant effect of familiarity, F(1, 46) = 6.213, MSE = 1.351,

p < .05, confirming that familiar faces were recognized more accurately than unfamiliar

faces. The effect of condition remained significant, F(3, 138) = 164.75, MSE = 0.732,

p < .001. The interaction of familiarity and condition reached statistical significance

F(3, 138) = 4.0, MSE = 0.732, p < .01.

Fig. 4. Familiar face recognition: D-prime values for all conditions of both groups. Group 1 was tested in the

blurred condition before the scrambled condition; Group 2 carried out the scrambled condition before they were

tested with blurred faces. The error bars depict standard deviations.
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3.2.1. Reaction times
The reaction times revealed a significant effect of condition, F(3, 66) = 30.03, MSE =

3,859,114.93, p < .001, a significant effect of novelty, F(1, 22) = 20.37, MSE = 608,089.61,

p < .001, and a significant condition · novelty interaction, F(3, 66) = 5.83, MSE =

661,596.84, p < .01. As in Experiment 1 there was no effect of block order (blr-scr vs.

scr-blr) and none of the interactions with block order were significant. Therefore, data were

pooled across groups (block order scr-blr vs. blr-scr) for calculating mean RTs. The mean

reaction times are shown in Fig. 5.

The anova comparing the RTs of Experiment 1 and Experiment 2 revealed no significant

effect of familiarity, p = .45, showing that unfamiliar faces were recognized just as fast as

familiar faces.

3.3. Discussion

Familiar face recognition tested in Experiment 2 differs with regard to three main

results from unfamiliar face recognition tested in Experiment 1. First, the overall d-prime

value for blurred faces did not differ significantly from the d-prime values for the intact

faces. Second, the scrambled-blurred condition was recognized slightly above chance

level, and third, there was no interaction between condition and block order. More spe-

cifically, in contrast to Experiment 1, comparisons by block order in Experiment 2

showed no decrement for blurred face recognition when tested after scrambled face rec-

ognition, suggesting that configural representations are more stable and robust for famil-

iar faces.

The high-recognition performance of the blurred faces supports the idea that configu-

ral processing becomes more accurate and stable when faces are familiar. An overall

main effect showed that familiar face recognition was more accurate in terms of

encoding and storing featural and configural information (quantitative difference). In

Fig. 5. Familiar face recognition: reaction times for targets and distractors. The error bars depict standard devia-

tions.
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addition, there is also a qualitative difference when the stability of the encoding is con-

sidered. While configural representations appeared to fade over time for unfamiliar faces

(Experiment 1), they were more stable when faces were familiar. The fact that there

was no decrease of d-prime value in the blurred condition of Experiment 2 as opposed

to Experiment 1 is consistent with the hypothesis that with growing familiarity configu-

ral information is remembered better. If faces are unfamiliar it is much more difficult to

remember the configuration of a face. Familiar faces, on the other hand, have been

encountered much more often and therefore there is no decrease in recognition

performance for configural information.

In the control condition the scrambled-blurred faces were recognized slightly above

chance level; post-hoc analyses revealed that this was only due to one participant group

(block order blr-scr). Moreover, it is important to note that performance in this group was

only slightly above chance and considerably worse than when faces were only scrambled or

only blurred. In the other group (scr-blr) performance was at chance in the scrambled-

blurred condition. Taken together, these results suggest that configural and featural

processing was substantially impaired by scrambling and blurring. The fact that there was

no condition · block order interaction supports the view that the two processes work

independently; no transfer effect was found from either condition to the other.

Regarding reaction times, the significant effect of condition once again reflects the

difficulty of the task. The baseline and the blurred condition both reveal very short reac-

tion times, whereas the reaction times of the scrambled and scrambled-blurred conditions

were rather long. This difference may reflect the cognitive processes underlying face

recognition. Both the intact faces and the blurred faces could be processed holistically,

whereas for the scrambled condition RT data seem to be more consistent with a slower

serial search mechanism in which parts are processed separately in order to match them

to memory representations. The shorter RTs for target faces further accounts for this

claim.

In summary, the data of Experiment 2 confirmed and extended findings of Experi-

ment 1. As in the previous experiment both scrambled and blurred faces were recog-

nized at above chance levels, indicating that both featural and configural representations

can be used independently of one another to recognize faces. Scrambled-blurred faces

were processed at chance (group blr-scr) or just above chance level (group blr-scr),

indicating that together the two manipulations eliminated most or all of the featural and

configural cues in the stimuli. Familiar faces were on the whole recognized more accu-

rately than unfamiliar faces, reflecting a quantitative advantage with growing familiarity.

In addition, there was a significant interaction between familiarity and condition indicat-

ing a shift towards configural processing for familiar faces. In fact, blurred familiar

faces were recognized as accurately as intact faces, even when they followed a block of

intervening scrambled faces, suggesting that configural representations are more stable

and robust for familiar faces. In line with a recent study by Lobmaier and Mast (2007),

the present data suggest a difference in processing, namely that configural face repre-

sentations of familiar faces are processed more accurately than those of unfamiliar

faces.
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4. Experiment 3

Diamond and Carey (1986) distinguished first- and second-order relational information.

Second-order relational information is defined as the exact distances between the features,

while first-order relational information describes the relative position of a feature in the face.

The terms ‘‘metric spatial relations’’ and ‘‘categorical spatial relations’’ (Kosslyn, 1994)

make a similar distinction. The scrambling used in Experiments 1 and 2 destroyed both first-

and second-order relational information. Nothing can be said about the spatial dependence

of featural representations. The aim of Experiment 3 was to scrutinize whether featural rep-

resentations are indeed independent of both first- and second-order relational information.

In the scrambled faces of Experiment 3 we left the categorical relations intact but changed

the metrical distances between the parts. If categorical spatial relations are explicitly repre-

sented, a face would be better recognized when the features are left in their categorical

spatial relations. On the other hand, featural representations may be relatively independent

of their spatial relationship both in terms of first- and second-order relational information.

In this case we would expect no increase of sensitivity when the parts are left in their

categorically correct location.

4.1. Method

4.1.1. Participants
Twelve undergraduate students of Zurich University ranging in age between 20 and

35 years voluntarily took part in Experiment 3. All participants were naı̈ve to the aim of the

study and did not take part in any other experiments reported here. All reported normal or

corrected-to-normal vision and were unfamiliar with all the test faces.

4.1.2. Apparatus
The apparatus was the same as in the previous experiments.

4.1.3. Stimuli
The same intact and blurred stimuli were used as in Experiments 1 and 2. New scrambled

stimuli were created by placing the parts in their categorically correct position, but destroy-

ing the precise metric spatial relations (categorical scr). The same parts were used as in

Experiments 1 and 2. An example stimulus is shown in Fig. 1E.

4.1.4. Task and procedure
The task and procedure were comparable to that used for Group 2 in Experiment 1.

Participants were tested in the baseline condition with intact faces, then with the new

scrambled faces, and finally with blurred faces. Scrambled-blurred faces were not tested

in this experiment. The results of the categorical scrambled faces could then be

directly compared with the results in the scrambling condition of Group 2 in

Experiment 1.
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4.1.5. Analyses
As in the previous experiments the d-prime value was calculated for each participant. A

one sample t test was carried out on the d-prime values of each condition in order to check

the difference from chance level. Then a two-sample t test was carried out comparing the

results of the scrambled condition of Group 2 in Experiment 1 and the scrambled condition

in this experiment. A two-way analysis of variance (anova) was additionally carried out

with condition (base, scr, blr) as within-participants factor and group (metric scr, categorical

scr) as between-participants factor.

4.2. Results

The mean d-prime values were 4.06 for intact faces, 1.73 for scrambled faces, and 2.16

for blurred faces. The one-sample t test revealed a significant difference from 0 for intact

faces, t(11) = 21.9, p < .001, scrambled faces, t(11) = 6.05, p < .001 and blurred faces,

t(11) = 9.84, p < .001 (all two-tailed). The two-sample t test revealed no significant differ-

ence between the two scrambling conditions of Experiment 3 and Group 1 in Experiment 1,

t(22) = 0.4, p = .70 (two-tailed). The two-way anova revealed only a significant effect of

condition, F(2, 44) = 60.49, MSE = 0.61, p < .001. There was no effect of group (metric

scr, categorical scr) and no two-way interaction condition · group, F(2, 44) = 0.09,

MSE = 0.51, p = .76. The results are shown in Fig. 6.

4.3. Discussion

Theories of face perception highlight distinctions between different types of configural

processing. One important distinction is between first-order categorical relationships speci-

fying that a stimulus is a face and second-order relational cues that vary between faces

Fig. 6. D-prime values of scrambled and blurred condition. Dark bars depict the group tested in categorical

scrambling condition (i.e., where categorical spatial relations are left intact, Categorical Scr), and gray bars

depict values of Group 2 in Exp. 1 (Full Scramble). The error bars depict standard deviations.
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(Diamond & Carey, 1986; Maurer et al., 2002). According to these theories, second-order

relational information should be of greater importance in recognizing individual faces, but

there has been little or no research that has tested whether first-order categorical informa-

tion makes some additional contribution to face recognition, either alone, or in interaction

with featural or configural cues. In Experiment 3 faces were cut into parts, which were

placed in their categorically correct place. These types of scrambled faces were not

recognized more accurately than faces whose parts have been scrambled and placed in

their categorically incorrect place (scramble condition in Experiment 1). These findings

support the view that the explicit representation of categorical relations is of no use

for identifying faces. Featural representations seem to be independent of the spatial

arrangements of the facial parts. More specifically, facial features are processed regardless

of their spatial location; the use of featural information in face recognition seems to be

independent of its location.

5. Experiments 4–6

Experiments 1–3 showed that human beings can independently process featural and

configural face information and that these two information types constitute two separate

routes to face processing. Experiment 3 further showed that featural information is indepen-

dent of its spatial location in the face. In the following we aim to design and test a computa-

tional implementation of the two-route processing model for face recognition (Experiments

4–6). Research on face recognition in the context of computer vision can be roughly divided

into three areas:

1. Feature-based approaches process an image of a face to extract features—these can

range from simple, high-contrast features to high-level, semantic facial features.

2. Holistic approaches use the full image pixel information of the face image.

3. Hybrid systems combining these two approaches.

The earliest work in face recognition focused almost exclusively on high-level, feature-

based approaches. Starting in the 1970s, several systems were proposed that relied on

extracting facial features (eyes, mouth, and nose) and in a second step calculating two-

dimensional geometric properties of these features (Kanade, 1973). Although it was shown

that recognition using only geometric information (such as distances between the eyes, the

mouth, etc.) was computationally effective and efficient, the robust, automatic extraction of

such high-level facial features has proven to be very difficult under general viewing condi-

tions (Brunelli & Poggio, 1993). One of the most successful face recognition systems based

on local image information therefore used much simpler features based on Gabor-filter

responses, which are collected over various scales and rotations and then processed using a

complex, graph-based matching algorithm (Wiskott, Fellous, Krüger, & v. d. Malsburg,

1997). The advantage of such low-level features lies in their conceptual simplicity and

compactness.
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In the early 1990s, Turk and Pentland (1991) developed a holistic recognition system

called ‘‘Eigenfaces,’’ which used the full pixel information to construct an appearance-

based, low-dimensional representation of faces—a face space. This general idea of a face

space is shared by other algorithms such as Linear Discriminant Analysis (LDA; Belhumeur,

Hespanha, & Kriegman, 1997), Independent Component Analysis (ICA; Bartlett, Move-

llan, & Sejnowski, 2002), Non-negative Matrix Factorization (NMF; Lee & Seung,

1999), or Support Vector Machines (SVMs; Phillips, 1999). The main difference between

these algorithms lies in the statistical description of the data as well as in the metrics

used to compare different elements of the face space. The advantage of PCA (and other

holistic approaches) in particular is that they develop a generative model of facial

appearance that enables them, for example, to reconstruct the appearance of a noisy or

occluded input face. An extreme example of this is the morphable model by Blanz and

Vetter (for recognition applications, see Blanz & Vetter, 2003 and Weyrauch, Heisele,

Huang, & Blanz, 2004), which does not work on image pixels but on three-dimensional

data of laser scans of faces. Because of their holistic nature, however, all of these

approaches require specially prepared training and testing data with very carefully

aligned faces in order to work optimally.

Given the distinction between local and holistic approaches, it seems natural to combine

the two into hybrid recognition architectures. Eigenfaces can of course be extended to

‘‘Eigenfeatures’’ by training facial features instead of whole images. Indeed, such systems

have been shown to work much better under severe changes of the appearance of the face

such as due to occlusion by other objects or make-up (see Swets & Weng, 1996). Another

system uses local information extracted from the face to fit a holistic shape model to the

face. For recognition, not only holistic information is used but also local information from

the contour of the face (Cootes, Edwards, & Taylor, 2001). Finally, in a system proposed by

Heisele, Ho, Wu, and Poggio (2003), several SVMs are trained to recognize facial features

in an image, which are then combined into a configuration of features by a higher-level

classification scheme. Again, such a scheme has been shown to outperform other, purely

holistic, approaches.

Recently, there has been growing interest in testing the biological and behavioral plausi-

bility of some of these approaches (e.g., Furl, O’Toole, & Phillips, 2002; Riesenhuber,

Jarudi, Gilad, & Sinha, 2004; Schwaninger, Wallraven, & Bülthoff, 2004; Wallraven,

Schwaninger, & Bülthoff, 2004, 2005). In Schwaninger et al. (2004) and Wallraven et al.

(2004, 2005) we proposed a simple, computational implementation of the two-route pro-

cessing described in this paper and showed that it could capture the psychophysical data on

face recognition obtained by Schwaninger et al. (2002). The computational model was

designed using a low-level, feature-based face representation consisting of salient image

features that were extracted at a detailed and a coarse image scale. The detailed image

features were used for the component route, whereas the configural route was modeled

using the coarse image features and their spatial layout.

The aims of Experiments 4–6 are to extend our previous results (Schwaninger et al.,

2004; Wallraven et al., 2004, 2005) by modeling the psychophysical data on configural and

component processing obtained in Experiments 1–3, respectively.
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In addition, we will compare and discuss the proposed computational model in the

context of other feature-based and holistic models.

5.1. Computational implementation of component and configural processing

In the following we describe the computational implementation, which is largely based on

Wallraven et al. (2004, 2005). The core question that this implementation tries to address is

how to formulate configural and component information algorithmically so that they become

amenable to computational modeling. For this, we use two basic ingredients: the data repre-

sentation, which in our case amounts to specifying how to extract appearance and spatial fea-

tures from visual input, and the data processing, which in our case consists of the algorithms

which manipulate the representations in order to match, for example, a new face to an old face.

The implementation uses an appearance-based representation based on local features that

are extracted at two image scales. In this context, ‘‘appearance-based’’ means that the repre-

sentation is directly derived from the visual input. The representation is based on the con-

cept of ‘‘local features,’’ which can be defined as robustly localizable subparts of an

image—examples for these kinds of local features range from low-level features such as

regions of high changes in image intensity to higher-level features such as eyes, mouth, and

nose in the case of faces. The reason for choosing local features rather than global, holistic

ones (see also discussion above) lies in their increased robustness to changes in viewing

conditions such as occlusion, lighting, etc. Finally, our implementation uses a multi-scale

approach by analyzing image content at multiple spatial frequencies. The main reason for

this is that as was shown in earlier studies, configural and component information seem to

be extracted and processed at different spatial frequency scales (Goffaux, Hault, Michel,

Vuong, & Rossion, 2005). The frequency ranges of the two scales in our implementation

therefore correspond closely to the ones that were found to be important for the processing

of component (>32 cycles per face width) and configural (<8 cycles per face width) infor-

mation in their study.

More specifically, given an image of a face, it is first low-pass filtered to obtain the two

image scales. On each scale, the image is processed by a Harris corner detector (Harris &

Stephens, 1988), which extracts salient image locations in the image based on the strength

of local image intensity gradient. The appearance-based feature information then simply

consists of a small image patch (5 · 5 pixels) that is extracted around each feature location

in the image. The spatial feature information is determined by its embedding, which consists

of a vector containing two-dimensional pixel distances to a number of neighboring features.

The number of features to which the distance is evaluated varies for the component or the

configural properties of each feature: For component information, a local, small neighbor-

hood is used, whereas for configural information, a global, large neighborhood is specified.

The extent of the neighborhood for each of the two scales constitutes a free parameter of the

system—in this study, however, the two parameters are fixed.

Fig. 7 shows a reconstruction of a face from such a feature representation. Note how

despite the fact that the feature extraction algorithm is not designed for detecting facial fea-

tures, the features tend to cluster around semantically important facial features, such as the
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eyes, nose, corners of the mouth, etc. The total number of features that are extracted at each

scale is an additional input parameter to the implementation—the reconstruction shown in

Fig. 7 uses 25 features at each scale.

The second major component of the computational modeling effort consists of specifying

a matching algorithm that can recognize faces, that is, to determine whether an image of a

face has previously been seen. As each image consists of a set of local features (consisting

of appearance-based image patches and spatial embeddings), recognition amounts to finding

the best matching feature set between a test image and all learned images. The two routes

for face processing in this case are implemented with two different matching algorithms

based on configural and component information. Each feature is matched to all other fea-

tures in an image using two terms: The first term specifies the appearance similarity of the

two image patches, which is done by calculating a normalized cross-correlation between the

image intensity values in the two patches. The second term determines the geometric simi-

larity between the embeddings of the features. This is done by evaluating the Euclidean dis-

tance between the two embedding vectors. To reiterate, component matching is done on the

higher-frequency scale using a local-neighborhood analysis, whereas configural matching is

done on the lower-frequency scale using the global neighborhood relations between fea-

tures. In a final step, we then determine a one-to-one mapping between all features of the

source image to the target image. The percentage of matches for the component route and
the configural route between two images then constitutes two matching scores, which

averaged together yield the final matching score.

5.2. Experiment 4—Recognition of scrambled and blurred faces

5.2.1. Stimuli
In order to compare the computational results with the psychophysical data, the computa-

tional experiments used the same sets of stimuli as the studies conducted in Experiment 1–3.

Fig. 7. Original face (left) and reconstruction from its feature representation (right). Blurred features originate

from the coarse scale, whereas detailed features originate from the fine scale. Note how features tend to cluster

around facial landmarks (eyes, mouth).
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5.2.2. Task and procedure
Each of the 10 target images was first encoded yielding the local feature representation

and its configural information. In a simulated old-new experiment, the 10 target images as

well as 10 distractors were then presented to the system in the blurred, scrambled, and

scrambled-blurred conditions. Each image was encoded and, using the feature matching

algorithm, matched against the previously learned images, which resulted in 10 matching

scores.

In a next step, the scores were converted into a performance measure that can be directly

compared with the psychophysical data. For this, they were converted into an ROC-curve

by thresholding the matching scores for the target faces (resulting in hit-rates as a function

of the threshold) as well as the matching scores for the distractor faces (resulting in false-

alarm-rates as a function of the threshold). Finally, the area under the ROC-curve was

measured (this measure is abbreviated as AUC in the following) yielding a nonparametric

measure of recognition performance (0.5 £ AUC £ 1.0). This procedure was repeated 10

times with different subsets of target and distractor faces in order to be able to statistically

analyze variations in the computational recognition results. Similarly, the human d¢-scores

were converted to AUC scores (see Green & Swets, 1966).

Furthermore, we ran the same experiments with three additional computational algo-

rithms. The first algorithm used the same matching strategy, albeit without the geometric

term, which allowed us to assess the advantage gained by adding spatial layout information

for feature matching in the configural route. The second algorithm is a state-of-the-art local

feature framework based on scale-invariant features (SIFT, Lowe, 2004) that was shown to

provide excellent performance in a number of object recognition tasks. Local features in this

framework consist of scale-invariant, high-dimensional (each feature vector has 128 dimen-

sions) histograms of image gradients at local intensity maxima. The SIFT algorithm is avail-

able for download at http://cs.spider.uk.ca/~lowe/ and was used without modification in the

following experiment. Finally, we wanted to compare modeling performance to a simple

holistic matching algorithm. For this third algorithm, the image representations simply con-

sisted of all image pixels of the face images. Matching was done by considering the image

pixels as a vector and then simply evaluating the Euclidean distance between two pixel

vectors.

5.2.3. Results and discussion
Fig. 8 compares AUC-values for human data with AUC-values for the computational

implementation. In addition, the computational data are separated to show the contributions

of the configural route and the component route in the different conditions. First, it can be

seen that the computational performance is slightly lower than the human performance. This

can be attributed to the simple visual features that were used in our implementation. More

importantly, however, the relative contribution of the two processing routes follows exactly

the expected pattern with the configural route being active in the blurred condition and the

component route being active in the scrambled condition. In addition, the configural route

does not contribute to recognition in the scrambled condition; similarly, the performance of

the component route in the blurred condition is negligible. Performance of both routes

A. Schwaninger et al. ⁄ Cognitive Science 33 (2009) 1431



reaches chance level in the scrambled and blurred condition. In addition, the relative contri-

butions of each route closely follow the human data.

Taken together, this pattern of results models the psychophysical experiments on a quali-

tative level and thus provides initial evidence for the perceptual plausibility of our imple-

mentation of the two routes of visual processing. In Fig. 9, an example of feature matching

in each of the three conditions is given—corresponding features are indicated as white dots.

In this example, the component route is active for the scrambled condition, the configural

route for the blurred condition, whereas only one match could be found in the scrambled

and blurred condition. The full experimental results in Fig. 8 confirm that both routes pro-

cess the information independently as AUC-values are negligibly small for the conditions in

which only one type of information should be present. In addition to the quantitative results

and the relative activation of the two routes in the different condition, this provides further

evidence for the plausibility of the implementation.

Fig. 8 also shows the results of standard local feature matching without the geometric

constraint on the stimuli. Whereas there is no difference for the scrambled stimuli (which is

not surprising, given that both algorithms are virtually identical), recognition performance

in the blurred condition drops to the level of performance in the scrambled condition. This

result demonstrates that the additional geometric constraint not only helps to increase recog-

nition performance but that this local feature-matching framework seems necessary to

capture the performance pattern observed in the human data.

Performance for the feature-based SIFT approach (sift-fea) is rather poor in the blurred

condition, whereas the scrambled condition yields almost perfect recognition rates and the

scrambled-blurred condition drops to chance levels. The inferior performance in the blurred

Fig. 8. Unfamiliar face recognition: AUC values for all conditions of the human data as well as the computa-

tional modeling data. The computational data is split into contributions of the component and configural process-

ing route, as well as standard local feature matching (std), matching with SIFT features (sift-fea), and with

holistic image representations (ima-hol). Performance for intact faces is at AUC = 1.0 and is not shown here. In

addition, performance for the combined model does not differ from the single routes for each condition. All error

bars depict SEM.
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condition is due to the fact that only a few SIFT features are extracted in the blurred images,

which severely limits the discriminatory power of the feature matching. In the scrambled

condition, however, the many detailed, high-dimensional features that are extracted for both

scrambled and intact images guarantee a high degree of recognition performance.

Finally, as can be seen in Fig. 8, the holistic approach (ima-hol) shows the exact opposite

pattern to the feature-based approach: almost perfect recognition performance in the blurred

condition with chance performance in both the scrambled and scrambled-blurred condition.

This pattern is not surprising given that the coarse outline of the pixel information in the

Fig. 9. Corresponding features for the three test conditions: The left face in all three rows shows a learned train-

ing face, whereas the right face is from one of the three test conditions (upper row: blurred face; middle row:

scrambled face; lower row: scrambled and blurred face). The lines on both the training as well as the testing

faces connect the corresponding features in the image plane, respectively. In the blurred condition, the only

matches stem from the configural route; in the scrambled condition, only the featural route is active. The one

false match shown here in the scrambled and blurred condition is due to a featural match.
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intact images is preserved in the blurred condition. It is perhaps interesting to note that such

a pattern of performance would also be predicted for the Elastic Bunch Graph Matching

method proposed by Wiskott et al. (1997). Even though this algorithm has been shown to be

able to tolerate substantial changes in viewing conditions (such as changes in lighting,

image plane rotation, as well as some invariance to rotation in depth and moderate degrees

of occlusion), a fully scrambled face as used here and in the perceptual experiments would

not be recognizable anymore in this approach.

In summary, none of the other computational approaches is capable of modeling the rela-

tive contribution of the component and configural route on its own—both the failure of

purely feature-based and purely holistic approaches speak strongly in favor of a hybrid

approach integrating appearance-based and configural information.

5.3. Experiment 5—Effect of familiarity

In a second step it was tested how well the computational implementation would be able

to capture the effects of familiarity observed in the psychophysical experiments. One of the

most obvious parameters that might be responsible for the difference between familiar and

unfamiliar face recognition might be the richness or complexity of the extracted representa-

tion. If humans are repeatedly exposed to the same face, this experience could simply result

in a more detailed representation of its visual appearance. The computational counterpart to

this in our computational implementation would consist of the number of local features that

constitute the representation of a face image. The following computational experiment

explicitly tested this hypothesis with the stimulus set of the previous experiment by system-

atically increasing the number of features in each processing route.

5.3.1. Results and discussion
Fig. 10 shows AUC-values for the human data from Experiment 2 compared with

AUC-values for the computational implementation. The computational data are shown

for three different sizes of the visual representation: original (same as in the previous

experiment), the number of local features increased by 50%, and the number of features

increased by 10%. As hypothesized, the performance of the computational data increases

with increasing visual complexity in both routes. In contrast, the results for the configural

route in the scrambled condition and for the component route in the blurred condition

show no systematic increase with increasing visual complexity. Most importantly, the rel-

ative contribution of each route does not change in the three conditions. In addition, the

performance of the most complex visual representation approaches human perfor-

mance—a further increase in number of features, however, does not provide better recog-

nition performance, indicating that the discriminatory power of the simple visual features

used in this study has reached its limits. The experimental results presented here suggest

that a surprisingly simple parameter such as the complexity of the visual representation

might be sufficient to explain the increase in performance observed in the psychophysical

experiments.
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5.4. Experiment 6—Effect of scrambling type

Whereas in the previous two computational experiments we were interested in modeling

unfamiliar and familiar face recognition, in this experiment we wanted to reproduce the

independence of scrambling type found in Experiment 3 in the original psychophysical

study. The computational experiment was therefore repeated with the same set of categori-

cally scrambled stimuli and compared with the results from the non–categorically scrambled

face images used before.

5.4.1. Results and discussion
The results of this computational experiment are shown in Fig. 11 for the two types of

scrambling (Cat and Tot). Similarly to the human data, the computational performance

remains unaffected by type of scrambling used, thus providing further support for the plausi-

bility of our implementation. This is confirmed by a two-sample t test (two-tailed), which

yields no significant difference between the two conditions for the component processing

route, M = 0.82, t(11) = 1.46, p = .16.

6. General discussion

In this study we investigated the role of featural and configural representations in familiar

and unfamiliar face recognition. In three psychophysical experiments, featural and configu-

ral information was presented in isolation, testing whether faces could still be recognized on

the basis of only one kind of information. All three experiments support a face processing

model that includes separate configural and featural representations. Many authors have

argued that upright faces are processed holistically (Biederman & Kalocsai, 1997; Farah

Fig. 10. Familiar face recognition: AUC values for all conditions of the human data as well as the computa-

tional data split into contributions by the component (featural) and configural processing route. Computational

data are based on three visual representations with increasing visual complexity. The error bars depict SEM.
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et al., 1995; Tanaka & Farah, 1993). There are different ways of defining holistic processing

(for reviews see Maurer et al., 2002; Schwaninger et al., 2003, 2006). A purely holistic view

of face processing in which featural information is not explicitly represented is inconsistent

with our results. In all experiments faces were reliably recognized when only featural infor-

mation was provided (scrambled condition). This is consistent with the model proposed by

Schwaninger et al. (2002, 2003), according to which faces are first represented in the pri-

mary visual areas as pictorial metric input representations. From these input representations

specific information is extracted in order to form featural and configural representations.

The output of these representations then converges to the same face identification units,

which integrate featural and configural information to ‘‘holistic’’ representations. Note that

this understanding of holistic differs from the original concept formulated by Tanaka and

Farah (1993) and Farah et al. (1995) who claim that parts (featural information) are not

explicitly represented. Our data clearly suggest a dual-code view where featural and confi-

gural information is represented separately before it is combined into a holistic face

representation. This is very much in accordance with findings of several other studies

(e.g., Bartlett et al., 2003; Cabeza & Kato, 2000; Collishaw & Hole, 2000; Rhodes et al.,

1993; Tanaka & Sengco, 1997). These assumptions are based on behavioral data and it is

certainly interesting to compare our data with results from cognitive neuroscience. In their

review, Rossion and Gauthier (2002) remark that no current fMRI or anatomical data give

evidence that facial features are extracted before they are combined to a holistic representa-

tion. Yet, Haxby, Hoffman, and Gobbini (2000) suggest that a region of the inferior occipital

gyrus may be involved in the perception of facial parts. It will have to be the aim of future

work to repeat these experiments with methods of cognitive neuroscience, in order to find

out whether featural processing can be anatomically dissociated from configural processing.

Our study showed that there is no transfer effect in terms of a performance increase from

blurred to scrambled recognition and vice versa, which is consistent with the assumption of

separate representations for featural and configural information. Moreover, the results of

Fig. 11. AUC values of scrambling condition for human and computational data where categorical spatial rela-

tions are left intact (Cat) versus where they are totally scrambled (Tot). The error bars depict SEM.
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Experiments 1 and 2 suggest that both featural and configural representations are used for

familiar and unfamiliar face recognition. Familiar faces were recognized more accurately

than unfamiliar faces and the comparisons by block order in Experiment 1 and Experiment

2 indicated that configural representations are more stable and robust for familiar faces.

Experiment 3 revealed that featural representations seem to be independent of the spatial

arrangement of the facial parts. The fact that first- order relational information did not

increase recognition accuracy is consistent with the assumption that featural representations

are independent of first- and second-order relational information. This leads to the conclu-

sion that categorical relational information is not crucial for recognizing individual faces.

Note, however, that representations of categorical relations may be important for recog-

nizing that a stimulus is a face as suggested by Maurer et al. (2002) (see also Diamond &

Carey, 1986).

As a second focus of our work, we have presented a computational framework based on

local features and their spatial relations that was motivated by these two hypothesized routes

of facial processing. In summary, our results show that our implementation of the two-route

architecture is able to capture the range of human performance observed in the psychophysi-

cal experiments. In addition, changes in the internal parameters of the architecture—we

have so far investigated visual complexity and discriminability—result in plausible changes

in observed performance while retaining the overall qualitative similarity to the human data

in terms of the observed weighting of the two routes.

In the following, we discuss certain aspects of the proposed architecture in more detail.

As we have seen, by using more discriminative features it becomes possible to achieve very

good recognition performance for scrambled images, whereas by using holistic approaches,

performance is very good for blurred images. Whereas one might be able to model human

performance by a suitable combination of those two approaches, our implementation offers

an integrated, more parsimonious framework for recognition rather than postulating two

very different face representations. From a cognitive perspective, in addition, there is

evidence that humans do not seem to pay attention to images at the level of single pixel

information, as would be the case for the holistic computer vision techniques. Humans rather

seem to rely on a more abstract representation of visual data maybe even including a seman-

tic representation such as ‘‘full mouth,’’ ‘‘curved eyebrows,’’ which is based on a higher-

level interpretation of the visual information. Although our proposed computational model

is not semantically grounded, it is extendable to a semantic and thus class-specific represen-

tation (see, e.g., Ullman, Vidal-Naquet, & Sali, 2002 for an approach in this direction).

Alternatively, one might also base the need for a more abstract representation simply on

memory or storage constraints: The amount of visual memory necessary to save holistic,

detailed pixel information is simply not available for this task. The proposed implementa-

tion of the two processing routes can be seen as an embodiment of such a memory con-

straint: The huge number of possible visual features and their image relations is reduced to a

few of the most salient ones taking into account their local neighborhood for a larger num-

ber of detailed features and their global neighborhood for a smaller number of coarse fea-

tures. Whereas from a computer vision perspective the task itself could be solved with

almost perfect recognition performance—even though at a significantly higher memory
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load—the extraction of visual features enables a much sparser and more abstract representa-

tion. In addition, their inherent robustness allows for extraction of further abstract informa-

tion—such as analysis of visual features across all learned faces to extract parts and

common feature relations, etc. Apart from providing one layer of data abstraction, our

implementation of the visual features underlying the two processing routes thus seems to be

able to fit well into models of human visual memory.

In this context, it is important to stress that our focus in the implementation of the compu-

tational model has not been on developing efficient, low-level features for face recognition.

Indeed, it is easily possible to integrate state-of-the-art features such as SIFT (Lowe, 2004)

or Gabor Jets (Wiskott et al., 1997) into the configural and featural processing pipeline.

Nevertheless, in order to claim more generality and applicability in the domain of face rec-

ognition, the model would of course need to be tested with other recognition tasks, such as

generalization across view and illumination changes, sensitivity against occlusions, as well

as dealing with facial expressions. Providing these tests alongside with further improve-

ments in the algorithm is our current topic of research.

In summary, Experiments 1–3 have provided converging evidence for the view that com-

ponent and configural information are processed separately, encoded explicitly, and used

automatically in familiar and unfamiliar face recognition. A computational model that speci-

fies the processes and representations has been developed. The computational Experiments

4–6 have shown that this model is psychophysically very plausible since very similar results

were obtained as in the psychophysical Experiments 1–3.

Note

1. In order to identify the parts of a face, a free-listing experiment was run with 41

students. The most frequently named parts (named by more than 80% of the partici-

pants) were as follows: nose, eyes, cheeks, forehead, eyebrows, chin, ears, and mouth

(listed by frequency). The ears were excluded for technical reasons, leaving a total of

10 parts to be scrambled.
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