Laurenzi, Emanuele

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Laurenzi
Vorname
Emanuele
Name
Laurenzi, Emanuele

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Publikation
    A hybrid intelligent approach for the support of higher education students in literature discovery
    (2022) Prater, Ryan; Laurenzi, Emanuele; Martin, Andreas; Hinkelmann, Knut; Fill, Hans-Georg; Gerber, Aurona; Lenat, Doug; Stolle, Reinhard; van Harmelen, Frank [in: Proceedings of the AAAI 2022 Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence (AAAI-MAKE 2022)]
    In this paper, we present a hybrid intelligent approach that combines knowledge engineering, machine learning, and human intervention to automatically recommend literature resources relevant for a high quality of literature discovery. The primary target group that we aim to support is higher education students in their first experiences with research works. The approach builds a knowledge graph by leveraging a logistic regression algorithm which is first parameterized and then influenced by the interventions of a supervisor and a student, respectively. Both interventions allow continuous learning based on both the supervisor’s preferences (e.g. high score of H-index) and the student’s feedback to the resulting literature resources. The creation of the hybrid intelligent approach followed the Design-Science Research methodology and is instantiated in a working prototype named PaperZen. The evaluation was conducted in two complementary ways: (1) by showing how the design requirements manifest in the prototype, and (2) with an illustrative scenario in which a corpus of a research project was taken as a source of truth. A small subset from the corpus was entered into the PaperZen and Google Scholar, independently. The resulting literature resources were compared with the corpus of a research project and show that PaperZen outperforms Google Scholar
    04B - Beitrag Konferenzschrift
  • Publikation
    Practice track: a learning tracker using digital biomarkers for autistic preschoolers
    (2022) Sandhu, Gurmit; Kilburg, Anne; Martin, Andreas; Pande, Charuta; Witschel, Hans Friedrich; Laurenzi, Emanuele; Billing, Erik; Hinkelmann, Knut; Gerber, Aurona [in: Proceedings of the Society 5.0 Conference 2022 - Integrating digital world and real world to resolve challenges in business and society]
    Preschool children, when diagnosed with Autism Spectrum Disorder (ASD), often ex- perience a long and painful journey on their way to self-advocacy. Access to standard of care is poor, with long waiting times and the feeling of stigmatization in many social set- tings. Early interventions in ASD have been found to deliver promising results, but have a high cost for all stakeholders. Some recent studies have suggested that digital biomarkers (e.g., eye gaze), tracked using affordable wearable devices such as smartphones or tablets, could play a role in identifying children with special needs. In this paper, we discuss the possibility of supporting neurodiverse children with technologies based on digital biomark- ers which can help to a) monitor the performance of children diagnosed with ASD and b) predict those who would benefit most from early interventions. We describe an ongoing feasibility study that uses the “DREAM dataset”, stemming from a clinical study with 61 pre-school children diagnosed with ASD, to identify digital biomarkers informative for the child’s progression on tasks such as imitation of gestures. We describe our vision of a tool that will use these prediction models and that ASD pre-schoolers could use to train certain social skills at home. Our discussion includes the settings in which this usage could be embedded.
    04B - Beitrag Konferenzschrift
  • Publikation
    Towards an assistive and pattern learning-driven process modeling approach
    (2019) Laurenzi, Emanuele; Hinkelmann, Knut; Jüngling, Stephan; Montecchiari, Devid; Pande, Charuta; Martin, Andreas; Martin, Andreas; Hinkelmann, Knut; Gerber, Aurona; Lenat, Doug; van Harmelen, Frank; Clark, Peter [in: Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)]
    The practice of business process modeling not only requires modeling expertise but also significant domain expertise. Bringing the latter into an early stage of modeling contributes to design models that appropriately capture an underlying reality. For this, modeling experts and domain experts need to intensively cooperate, especially when the former are not experienced within the domain they are modeling. This results in a time-consuming and demanding engineering effort. To address this challenge, we propose a process modeling approach that assists domain experts in the creation and adaptation of process models. To get an appropriate assistance, the approach is driven by semantic patterns and learning. Semantic patterns are domain-specific and consist of process model fragments (or end-to-end process models), which are continuously learned from feedback from domain as well as process modeling experts. This enables to incorporate good practices of process modeling into the semantic patterns. To this end, both machine-learning and knowledge engineering techniques are employed, which allow the semantic patterns to adapt over time and thus to keep up with the evolution of process modeling in the different business domains.
    04B - Beitrag Konferenzschrift
  • Publikation
    Workplace Learning - Providing Recommendations of Experts and Learning Resources in a Context-sensitive and Personalized Manner
    (2016) Emmenegger, Sandro; Laurenzi, Emanuele; Thönssen, Barbara; Zhang Sprenger, Congyu; Hinkelmann, Knut; Witschel, Hans Friedrich [in: Proceedings of Special Session on Learning Modeling in Complex Organizations (LCMO) at MODELSWARD'16]
    Support of workplace learning is increasingly important as change in every form determines today's working world in industry and public administrations alike. Adapt quickly to a new job, a new task or a new team is a major challenge that must be dealt with ever faster. Workplace learning differs significantly from school learning as it should be strictly aligned to business goals. In our approach we support workplace learning by providing recommendations of experts and learning resources in a context-sensitive and personalized manner. We utilize user s' workplace environment, we consider their learning preferences and zone of proximal development, and compare required and acquired competencies in order to issue the best suited recommendations. Our approach is part of the European funded project Learn PAd. Applied research method is Design Science Research. Evaluation is done in an iterative process. The recommender system introduced here is evaluated theoretically based on user requirements and practically in an early evaluation process conducted by the Learn PAd application partner.
    04B - Beitrag Konferenzschrift