Wache, Holger

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Wache
Vorname
Holger
Name
Wache, Holger

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Publikation
    Technical Validation of the RLS Smart Grid Approach to increase Power Grid Capacity without Physical Grid Expansion
    (SciTePress, 05/2019) Christen, Ramón; Layec, Vincent; Wilke, Gwendolin; Wache, Holger; Donnellan, Brian; Klein, Cornel; Helfert, Markus [in: Smartgreens 2019. 8th International Conference on Smart Cities and Green ICT Systems, Heraklion, Crete, Greece, May 3-5, 2019. ProceedingsHeraklion, Crete, Greece,]
    The electrification of the global energy system and the shift towards distributed power production from sus- tainable sources triggers an increased network capacity demand at times of high production or consumption. Existing energy management solutions can help mitigate resulting high costs of large-scale physical grid rein- forcement, but often interfere in customer processes or restrict free access to the energy market. In a preceding paper, we proposed the RLS regional load shaping approach as a novel business model and load management solution in middle voltage grid to resolve this dilemma: market-based incentives for all stakeholders are pro- vided to allow for flexible loads that are non-critical in customer processes to be allocated to the unused grid capacity traditionally reserved for N-1 security of supply. We provide a validation of the technical aspects of the approach, with an evaluation of the day-ahead load forecasting method for industry customers and a load optimization heuristics. The latter is tested by a simulation run on a scenario of network branch with provoked capacity bottlenecks. The method handles all provoked critical network capacity situations as expected.
    04B - Beitrag Konferenzschrift
  • Publikation
    Load management for idle capacity of power grids
    (Springer, 2019) Layec, Vincent; Wache, Holger [in: Energy Informatics]
    A major issue hampering a rapid substitution of fossil fuels by electricity from sustainable sources is the fear of congestion of the power grid and of associated costs of their reinforcement. The conventional approach prevents any rapid raise of electricity demand by encouraging other energy carriers and sector coupling. However, no approach investigates the utilization of the full capacity of the power grid alone, which are kept idle to provide sufficient reserve for the case of a failure. Therefore, we test a load management approach designed to utilize this reserve capacity. We verify in this paper the correct functionality of the system made of a device manager for cost optimization of schedules and of a grid manager to enforce the respect of power limits of the grid. This novel approach contributes to reduce emission of greenhouse gases without grid reinforcement.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Technical validation of the RLS smart grid approach to increase power grid capacity without physical grid expansion
    (SciTePress, 2019) Christen, Ramón; Layec, Vincent; Wilke, Gwendolin; Wache, Holger; Donnellan, Brian; Klein, Cornel; Helfert, Markus [in: Proceedings of the 8th International Conference on Smart Cities and Green ICT Systems]
    The electrification of the global energy system and the shift towards distributed power production from sus- tainable sources triggers an increased network capacity demand at times of high production or consumption. Existing energy management solutions can help mitigate resulting high costs of large-scale physical grid rein- forcement, but often interfere in customer processes or restrict free access to the energy market. In a preceding paper, we proposed the RLS regional load shaping approach as a novel business model and load management solution in middle voltage grid to resolve this dilemma: market-based incentives for all stakeholders are pro- vided to allow for flexible loads that are non-critical in customer processes to be allocated to the unused grid capacity traditionally reserved for N-1 security of supply. We provide a validation of the technical aspects of the approach, with an evaluation of the day-ahead load forecasting method for industry customers and a load optimization heuristics. The latter
    04B - Beitrag Konferenzschrift
  • Publikation
    Flexible capacity addition case study at reduced grid tariff without security of supply
    (2019) Layec, Vincent; Wache, Holger [in: 2019 16th International Conference on the European Energy Market (EEM)]
    Energy intensive industries are sensitive both to the reliability and to the costs of their energy supply system. With renewable energy becoming more affordable, their weather dependent over- and under production will cause more volatile and higher spot price, but fees prevent the roll-out of Power- to-Gas. In this paper, we differentiate the new flexible loads of energy conversion and storage like Power-to-X or batteries from the regular loads of the core activity of industries and we design the tariff system of flexible loads in such a way to be financially attractive, by abandoning a security of supply that they actually do not need. In a previous work, the technical functionality of a load management system solving the grid congestion issues was described. Here we aggregate the yearly energy balance and the associated costs in six case studies to verify that the roll-out of the new flexible loads is economically viable. The financial attractiveness of the roll-out of new flexible loads with reduced tariff system and future drop in technology price is verified in all these customers and the tariff reduction for conditional loads is the decisive factor of the profitability in four of them.
    04B - Beitrag Konferenzschrift
  • Publikation
    A market-based smart grid approach to increasing power grid capacity without physical grid expansion
    (Springer, 01.02.2018) Bagemihl, Joachim; Boesner, Frank; Riesinger, Jens; Künzli, Michael; Wilke, Gwendolin; Binder, Gabriela; Wache, Holger; Laager, Daniel; Breit, Jürgen; Wurzinger, Michael; Zapata, Juliana; Ulli-Beer, Silvia; Layec, Vincent; Stadler, Thomas; Stabauer, Franz [in: Computer Science - Research and Development]
    The continuous increase of competitiveness of renewable energy in combination with the necessity of fossil fuel substitution leads to further electrification of the global energy system and therefore a need for large-scale power grid capacity increase. While physical grid expansion is not feasible for many countries, grid-driven energy management in the Smart Grid often interferes in customer processes and free access to the energy market. The paper solves this dilemma by proposing a market-based load schedule management approach that increases power grid capacity without physical grid expansion. This is achieved by allocating for a certain class of non-critical flexible loads called “conditional loads” the currently unused grid capacity dedicated to ensuring N−1 security of supply whereas this security level remains untouched for all critical processes. The paper discusses the necessary processes and technical and operational requirements to operate such a system.
    01A - Beitrag in wissenschaftlicher Zeitschrift