Lenz, Markus

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Lenz
Vorname
Markus
Name
Lenz, Markus

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Publikation
    Sulfur amino acid status controls selenium methylation in pseudomonas tolaasii. Identification of a novel metabolite from promiscuous enzyme reactions
    (American Society for Microbiology, 26.05.2021) Liu, Ying; Hedwig, Sebastian; Schäffer, Andreas; Lenz, Markus; Martinez, Mathieu [in: Applied and Environmental Microbiology]
    Selenium (Se) deficiency affects many millions of people worldwide, and the volatilization of methylated Se species to the atmosphere may prevent Se from entering the food chain. Despite the extent of Se deficiency, little is known about fluxes in volatile Se species and their temporal and spatial variation in the environment, giving rise to uncertainty in atmospheric transport models. To systematically determine fluxes, one can rely on laboratory microcosm experiments to quantify Se volatilization in different conditions. Here, it is demonstrated that the sulfur (S) status of bacteria crucially determines the amount of Se volatilized. Solid-phase microextraction gas chromatography mass spectrometry showed that Pseudomonas tolaasii efficiently and rapidly (92% in 18 h) volatilized Se to dimethyl diselenide and dimethyl selenyl sulfide through promiscuous enzymatic reactions with the S metabolism. However, when the cells were supplemented with cystine (but not methionine), a major proportion of the Se (∼48%) was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of the previously formed dimethyl diselenide and dimethyl selenyl sulfide (accounting for <4% of total Se). Ion chromatography and solid-phase extraction were used to isolate unknowns, and electrospray ionization ion trap mass spectrometry, electrospray ionization quadrupole time-of-flight mass spectrometry, and microprobe nuclear magnetic resonance spectrometry were used to identify the major unknown as a novel Se metabolite, 2-hydroxy-3-(methylselanyl)propanoic acid. Environmental S concentrations often exceed Se concentrations by orders of magnitude. This suggests that in fact S status may be a major control of selenium fluxes to the atmosphere. IMPORTANCE Volatilization from soil to the atmosphere is a major driver for Se deficiency. “Bottom-up” models for atmospheric Se transport are based on laboratory experiments quantifying volatile Se compounds. The high Se and low S concentrations in such studies poorly represent the environment. Here, we show that S amino acid status has in fact a decisive effect on the production of volatile Se species in Pseudomonas tolaasii. When the strain was supplemented with S amino acids, a major proportion of the Se was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of volatile compounds. This hierarchical control of the microbial S amino acid status on Se cycling has been thus far neglected. Understanding these interactions—if they occur in the environment—will help to improve atmospheric Se models and thus predict drivers of Se deficiency.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview
    (Taylor & Francis, 16.09.2016) van Hullebusch, Eric D.; Guibaud, Gilles; Simon, Stéphane; Lenz, Markus; Yekta, Sepehr Shakeri; Fermoso, Fernando G.; Jain, Rohan; Duester, Lars; Roussel, Jimmy; Guillon, Emmanuel; Skyllberg, Ulf; Almeida, C. Marisa R.; Pechaud, Yoan; Garuti, Mirco; Frunzo, Luigi; Esposito, Giovanni; Carliell-Marquet, Cynthia; Ortner, Markus; Collins, Gavin [in: Critical Reviews in Environmental Science and Technology]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Organic photovoltaics: Potential fate and effects in the environment
    (Elsevier, 2012) Zimmermann, Yannick-Serge; Schäffer, Andreas; Hugi, Christoph; Fent, Karl; Corvini, Philippe; Lenz, Markus [in: Environment International]
    In times of dwindling fossil fuels it is particularly crucial to develop novel “green” technologies in order to cover the increasing worldwide demand for energy. Organic photovoltaic solar cells (OPVs) are promising as a renewable energy source due to low energy requirement for production, low resource extraction, and no emission of greenhouse gasses during use. In contrast to silicium-based solar cells, OPVs offer the advantages of light-weight, semi-transparency and mechanical flexibility. As to a possible forthcoming large-scale production, the environmental impact of such OPVs should be assessed and compared to currently best available technologies. For the first time, this review compiles the existing knowledge and identifies gaps regarding the environmental impact of such OPVs in a systematic manner. In this regard, we discuss the components of a typical OPV layer by layer. We discuss the probability of enhanced release of OPV-borne components into the environment during use-phase (e.g. UV- and biodegradation) and end-of-life phase (e.g. incineration and waste disposal). For this purpose, we compiled available data on bioavailability, bioaccumulation, biodegradation, and ecotoxicity. Whereas considerable research has already been carried out concerning the ecotoxicity of certain OPV components (e.g. nanoparticles and fullerenes), others have not been investigated at all so far. In conclusion, there is a general lack of information about fate, behavior as well as potential ecotoxicity of most of the main OPV components and their degradation/transformation products. So far, there is no evidence for a worrying threat coming from OPVs, but since at present, no policy and procedures regarding recycling of OPVs are in action, in particular improper disposal upon end-of-life might result in an adverse effect of OPVs in the environment when applied in large-scale.
    01A - Beitrag in wissenschaftlicher Zeitschrift