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Abstract This work focuses on case-based reasoning in domains where
cases have complex structures with relationships to an arbitrary num-
ber of other (potentially complex and structured) entities and where
case characterisations (queries) are potentially incomplete. We summar-
ise the requirements for such domains in terms of case representation
and retrieval functions. We then analyse properties of existing similarity
measures used in CBR – above all symmetry – and argue that some of
these properties are not desirable. By exploiting analogies with retrieval
functions in the area of information retrieval – where similar functions
have been replaced by new ones not exhibiting the aforementioned un-
desired properties – we derive a new asymmetric ranking function for
case retrieval. On a generated test-bed, we show that indeed the new
function results in different ranking of cases – and use testbed examples
to illustrate why this is desirable from a user’s perspective.

1 Introduction

Case-based reasoning (CBR) addresses the problem of knowledge re-use by stor-
ing solutions to problems in a so-called case base and making such historical
knowledge accessible through a retrieval interface. The retrieval is at the heart
of any case-based reasoning (CBR) system: here, a knowledge worker who is
trying to solve a new case, searches for similar cases from the past in order to
re-use the knowledge contained in them. The retrieval of past cases is usually
based on a measure of similarity. The problem of deriving suitable similarity
measures has been studied in CBR for several decades now and a great wealth
of measures has been put forward.

Why is there a need for yet another similarity measure? We believe that
there is an important special situation in CBR that has been neglected in prior
research but is worth studying: the situation where the characterization of the



problem (i.e. the query) is underspecified or incomplete. This can happen for a
number of reasons. We studied an application scenario (see Section 4.1 below)
where a company that offers a document management system (DMS) wants to
re-use knowledge of how the DMS can be integrated into different, but sometimes
similar environments of their customers. In this scenario, the characterization of
the problem – which in the end will include a variety of requirements for the
integration solution – is incomplete in the beginning and evolves over time as the
situation is further explored together with the customer. That is, an integration
project proceeds along certain phases, from an initial specification, for which
an offer is made, over exploration of requirements in workshops together with
the customer to detailed specification, cost estimation and implementation of
a solution. And even in the early stages of such an integration project where
the case description is still fuzzy, re-use of knowledge from the case base can be
desirable, e.g. to proactively suggest suitable features used in earlier projects.
We expect similar situations in other areas. For instance in medicine, a physician
using a CBR system will first know the symptoms that the patient is describing –
and might want to use them for querying the case base. Later, as e.g. diagnostic
checks are executed, more knowledge about the problem becomes available and
the case characterization can be extended. Especially in the medical domain,
underspecified queries might also be caused simply by a lack of time of the
physician.

In other areas, characterization of the problem might be incomplete simply
because some details of the problem cannot be figured out. For instance, help
desk employees using a “conversational” CBR system [9] for solving customers’
problems will not always get satisfactory answers from a customer when trying
to clarify the faulty behavior of a product (e.g. a piece of computer hardware).
In such cases, the corresponding slots in the case characterization remain empty.

The situation of underspecified queries shares many characteristics with in-
formation retrieval (IR) systems where a user is trying to find documents from
a collection that satisfy a certain information need. In IR, the query – i.e. the
description of the information need – is always much shorter than the documents
that should be retrieved. In early IR research [23], queries were treated like or-
dinary documents and retrieval functions were essentially symmetric similarity
measures that could be applied to a pair of documents.

Later, other and more successful retrieval functions were developed within
the so-called language modeling approach. These functions are a) asymmetric,
b) strongly conjunctive (but not in the Boolean sense) and c) have a weaker
length penalty for documents than earlier functions. All these characteristics
account for the underspecification of queries via one fundamental thought: a
document may contain a lot of content unrelated to the query – which might be
still relevant because the query is simply incomplete – as long as it fully cov-
ers the information specified in the query. It is clear that a function reflecting
this thought cannot be symmetric: the roles played by the query and the doc-
ument cannot be interchanged in this argument. The thought also implies that
documents should not be overly penalised for length.



In this work, our goal is ”interdisciplinary”: we want to explore how cur-
rent effective IR retrieval functions can be transferred to the CBR domain and
whether they will lead to more effective retrieval in the case of underspecified
queries.

In CBR, similarity measures have been developed not only for non-complex
case descriptions with elementary attributes, but also for relational (or ontology-
based) case descriptions [17]. For instance, cases may be represented as instances
of an ontological schema that defines the entities involved in cases and the pos-
sible relationships among them (e.g.[14]). Thus, both in the query case as well
as in the compared historical case, a theoretically unlimited number of instances
of the same type or class can appear to fill a case property. Therefore we are
faced with the kind of n:m relations that Bergman [2] calls multivalued relational
attributes.

In our work, we also consider cases with relational descriptions – where rela-
tions can be of any kind (in particular, not only taxonomic relations are allowed).
Furthermore, we require similarities to be computed on the level of instances and
not only concepts.

2 Related Work

2.1 Case-based Reasoning and Retrieval Functions

Regarding the retrieval phase of a CBR cycle [1], [21], Perner [19] and Cunning-
ham [6] introduced a taxonomy of similarity mechanisms used in CBR. As they
remark, similarity measures in CBR usually make assumptions about how cases
are represented.

Some approaches do not assume the structure of the case base to be known
in advance. Instead, knowledge can be incrementally re-organized by detecting
novelty, adapting parameters and applying prototype-based classification [12].
Perner [20] proposes an algorithm that incrementally learns the organizational
structure of a case base via conceptual clustering.

When case structures are defined in advance, multiple options exist. For in-
stance, direct similarity mechanisms operate on simple feature-value representa-
tions of cases. Other, more sophisticated mechanisms are transformation based.
They ”[...] the effort required to transform one object into the other” [6, p.9]
such as Levenshtein edit distance or graph edit distance approaches (e.g. [15,4]).
Graphs are a natural way to represent any kind of structured objects (including
cases). By using attributes on vertices and edges, any structure can be repres-
ented; similarity measures can then be defined e.g. by identifying partial graph
isomorphisms [18].

Many CBR approaches use description logics for representation. A number
of corresponding similarity measures have been developed – a common thought
behind these is to put into relation the amount of information shared between
two cases and to contrast it with the amount of non-shared additional content
that both cases carry. Often, this is based on the notion of a least common



subsumer of two concepts [7], [24] and the idea of so-called anti-unification, a
symbolic representation of what two objects (e.g. cases) have in common [17].
In [8], similarity is not only defined on the concept level, but also extended to
the actual values of properties when comparing instances.

Apart from those approaches that are based on description logics, there exist
also some other measures for relational case representations:

– The work of Hefke et al. [10] adapts the cosine measure from information
retrieval to ontology-based case descriptions. Because of its similarity to our
approach (also taking the field of information retrieval for inspiration), we
will later use it as a reference in our experiments.

– Finally, since instances of ontological concepts can be represented as graphs
with typed edges and vertices (e.g. via RDF), graph-edit distances [15,4] and
approaches based on partial graph isomorphisms [18] are also applicable to
ontological case representations.

Case-based reasoning has also been approached via probabilistic reasoning.
For instance, [11] suggests a novel probabilistic approach to case-based inference.
Case-based inference, however, is more related to the “Reuse” phase of the CBR
cycle than to the Retrieval, i.e. similarity measures are used but not studied in
detail. In an older work [16], a probabilistic similarity measure based on Bayesian
inference is proposed; however, this mechanism assumes a non-structured case
representation – i.e. each case is assumed to be represented by a real-valued
feature vector.

2.2 Asymmetric similarity measures

All of the above-mentioned approaches result in symmetric similarity measures.
Apart from being symmetric, they also introduce severe penalties for non-shared
content between two cases, i.e. the similarity score drops rather steeply if at least
one of the two cases contains much (additional) information not found in the
other case.

Research that proposes asymmetric measures of similarity goes back to Tver-
sky [26] who argues that a statement “a is like b” is directional (“We say ’the
portrait resembles the person’ rather than ’the person resembles the portrait”’)
and who was able to prove that we usually regard the variant (’a’ / ’the portrait’)
as more similar to the prototype (’b’ / ’the person’) than vice versa. Hence, sim-
ilarity measures should not be symmetric. The same thought has been taken
up by researchers in CBR. For instance Jantke [13] states that “ less represent-
ative examples are often considered to be more similar to more representative
examples than the converse”.

Tversky [26] presents a family of similarity measures that is based on the
intersection (shared characteristics) and relative complements (non-shared char-
acteristics) of the set of properties of two objects. That family generalizes the
Jaccard and Dice coefficients. Jantke [13] makes a case for asymmetric similar-
ity and then proposes a new “inductive” similarity measure based on the most



specific antiunifier of a set of terms. However, this measure is ironically (as also
Bridge [3] remarks) symmetric. Gupta [9] focuses on conversational CBR (as
used e.g. in help desks) where cases are sets of question-answer pairs. He con-
centrates on ”abstraction”, i.e. the ability of the CBR system to retrieve cases
with more general or more specific values when compared to the query, assuming
that some case authors may have deeper knowledge and hence ability to spe-
cify on greater level of specificity than others. Questions are thus arranged into
a taxonomy and an asymmetric measure is proposed to compare them: if the
question in the query is an ancestor of (i.e. more abstract than) the question in
the case, the similarity is higher than in the opposite case.

Some researchers discuss asymmetry in CBR similarity measures without
proposing new measures. For instance, Bridge [3] discusses partial orderings
of similarity values, i.e. argues that similarity functions do not need to return
numbers, but can return anything on which an ordering is possible and then
shows how to combine different similarity functions with different return types
– and including both symmetric and asymmetric measures. Burke [5] discusses
challenges of efficient computation of asymmetric similarity, presenting a very
simple asymmetric measure to discuss its computational complexity.

2.3 Retrieval functions in information retrieval

Information retrieval (IR) systems retrieve and rank textual documents in re-
sponse to natural language queries formulated by end users. Retrieval functions
have been at the heart of IR research for many decades. A big step in that his-
tory was the invention of the vector space model [23] where both queries and
documents are represented as vectors over keywords and can be compared e.g.
via the cosine function. The vector space model became very popular and was
used in many areas outside IR, including CBR (see [10]).

However, it was found that the cosine function had several undesirable prop-
erties, in particular the strong penalty that it imposes on long documents by nor-
malising all vectors to unit length. Therefore functions with alternative length
normalisations were invented, e.g. [25]. Such functions are asymmetric – as op-
posed to the cosine function. More recently, a new family of retrieval functions
has been introduced that are based on so-called language models [22]. These new
functions are also asymmetric and have been shown to consistently outperform
all other retrieval functions.

2.4 Contribution

All in all, there have been arguments for asymmetric similarity measures in gen-
eral and in CBR, but the few asymmetric measures that have been put forward
do not satisfy the requirements of complex relational case bases: they are either
only suitable for feature-value case representations (e.g. the one proposed by
Tversky [26]). Or they only work for taxonomic, but not arbitrary relations,
such as in the work of Gupta [9].



The contribution of this paper lies in the transfer of principles from IR to
CBR: we argue that, when used to rank case characterisations in response to a
potentially incomplete query, a CBR retrieval function needs to satisfy the same
criteria as IR functions. In particular, we will examine the criteria of “length”
normalisation and symmetry and explain how advances in IR functions can be
transferred to CBR. This leads to the formulation of a new (family) of retrieval
functions for CBR that can be applied to arbitrary ontology-based queries and
case characterisations.

3 A new retrieval function

We will now develop a new retrieval function for case retrieval that is particu-
larly suitable for situations where queries are incomplete (see Section 1). It thus
addresses the shortcomings of the existing ontology-based functions w.r.t. these
scenarios.

For better comparison, we follow the notation used in [10]: in order to com-
pare two instances i1 and i2, we look at the k relationships (r1, ..., rk) that are
defined for the class to which i1 and i2 belong. And with Jk1 we denote the set
of instances that are linked to i1 through relationship rk, and analogously for
Jk2. For each relation rk, we will define a function that measures how closely i1
matches i2 with respect to all instances linked to both of them via rk. Later, we
will combine the relationship-based scores, together with scores yielded by com-
parison of atomic attributes (such as labels) into an overall score for comparing
i1 to i2. This scoring function is applied recursively, and when i1 is a query and
i2 is a case from the case base, it becomes the retrieval function.

As a running example, we will imagine that we have an instance of a case Cq
that is linked to two module instances m1 and m2 (i.e. r1 = has-module) and
that is used as a query. It will be compared to three other case instances C1, C2

and C3, each with a different set of linked modules, as depicted in Figure 1. We
assume that the similarities of modules are known and given in the two matrices
in Figure 2 (we have broken the matrices down because e.g. the similarities
between m3 and m5 are not required for any of the following computations).

Figure 1. Example instances of cases, each with a set of linked module instances

We now consider the disadvantages of existing CBR functions, as exempli-
fied by the cosine function, for ontology-based CBR with incomplete queries by
transferring knowledge from the area of information retrieval (IR):



Figure 2. Similarity matrices for the modules involved in the case instances of Figure
1

– Symmetry The modern language model-based retrieval functions in IR are
asymmetric: they define how to score documents against a query; when the
roles of query and document are switched, the score will change. For CBR,
we argue for asymmetry, too: when considering the example in Figures 1
and 2, we propose that the value f(Cq, C3) of a retrieval function f should
be smaller than when using C3 as the query (i.e. f(C3, Cq) – since, when
a user specifies two modules, she cares to have them matched and will be
disappointed with a result that does not (such as C3). On the other hand, if
she only specifies one module in the query (as when using C3 as the query),
she will be satisfied with any case that (partially) matches the module (such
as Cq).

– Length normalisation: In information retrieval, a known problem of the
cosine function (related to its symmetry) is the fact that it overly punishes
long documents. In CBR terms, it will punish cases having many attribute
values that are not specified in the query. In our example, when querying for
Cq, cosine will produce a substantially smaller score for C1 (0.56) than for
C3 (0.73) since C1 contains – besides the partially matching module m3 – a
module that does not match the query at all (m4), whereas C3 contains only
m3. However, from the perspective of a searcher, C1 is an equally good result,
assuming that the searcher is willing to ignore the non-matching module m4.
The length penalty is something that can also be counted as a weakness of
many other approaches, including the ones based on description logics.

– Conjunctiveness: Although modern retrieval functions in IR do not rely
on Boolean operators anymore – and hence do not apply strict conjunction
of query terms – the implicit interpretation of queries in web search engines
(such as Google or Yahoo!) is nearly conjunctive. In academic IR research,
the new family of language model retrieval functions (e.g. [22]) has been in-
troduced with much success – such functions are inherently more conjunctive
than e.g. the cosine function (see e.g. [27]). One reason for the success of con-
junctive query interpretation is the fact that the implicit semantics of most
queries typed into a search box is conjunctive – that is, when a user types a
short query such as “case based reasoning”, then usually none of these terms
is optional, i.e. the desired results contain all three terms. When designing
retrieval functions for CBR, there is good reason to assume a similar situ-
ation: when several characteristics of a case are specified for retrieval, there



is high probability that the user would like to see all characteristics matched
by the highly ranked retrieval results. In terms of our example, this means
that – when querying for Cq with its two modules – C2 should be preferred
over C1 since it has two (although only slightly) matching modules whereas
C1 can match only one. However, when using the cosine-based similarity
function presented in [10], C1 receives a slightly higher score (0.56) than C2

(0.55).

The new retrieval function shall be derived from the insights gained on lan-
guage model-based retrieval functions in IR. When using language models, the
basic assumption is that the searcher formulates a query by thinking of a typical
(or ”the”) relevant document and selecting the most important terms from this
prototypical relevant document (cf. [22]). The score f(q, d) of a real document
d w.r.t. q is then computed by working out how probable it is that the query
q would be drawn as a sample from the language model Md of the document
where a language model is a probability distribution over terms:

f(q, d) = P (q|Md) =
∏
t∈q

P (t|Md) (1)

Here, P (t|Md) is the probability of drawing term t from the document’s language
model. Different language modeling techniques have been proposed – they differ
mainly in the way P (t|Md) is computed. An important aspect in this regard is
smoothing, i.e. the way we assign probability to query terms that do not appear in
a document [28]. Setting that probability to 0 would result in a strict conjunctive
query interpretation (i.e. any document not containing all query terms receives
a score of 0) – hence, some probability is reserved for such absent terms.

In order to translate this to CBR, we first concentrate on a single relationship
rk (e.g. has-module). We may assume that, when formulating a query Cq, a user
thinks of a prototypical historical case that is similar to her current situation in
terms of the set E of involved related instances, e.g. modules. For a given case
Ci from the case base with a set of linked modules F , and in analogy with the
language model approach, we want to estimate the probability that E would be
drawn as a sample from F , i.e.

P (E|F ) =
∏
e∈E

P (e|F ) (2)

where P (e|F ) is the probability that instance e would be generated from the
set of instances F . The word ”generating” refers here to a process of remember-
ing: how likely is it that someone would specify element e, assuming that she
remembers the historical case with its attached set of elements F?

We further assume that p(e|F ) is given by the best match between e and any
f ∈ F . That is: we ask for the probability that e is specified when f is meant
for each f ∈ F and then assume that only the maximum probability is relevant
for the whole set F :

P (e|F ) =

{
maxf∈F p(e|f) if ∃f ∈ F : p(e|f) > 0
0.01 otherwise

(3)



As an example of such computation, consider the query case Cq given in Fig-
ure 1 with its set of modules {m1,m2}. When we compare it to case C1 with
modules {m3,m4}, we get P (Cq|C1) = P (m1|{m3,m4}) · P (m2|{m3,m4}) =
maxi∈{3,4} p(m1|mi) · maxi∈{3,4} p(m2|mi) = 0.7 · 0.01 = 0.007. On the other
hand, P (Cq|C2) = 0.3 · 0.3 = 0.09. Finally, P (Cq|C3) = 0.7 · 0.01 = 0.007, just
as P (Cq|C1).

We see that, by using a product for combining the probabilities of query ele-
ments, we end up with a rather conjunctive query interpretation, rather strongly
preferring C2 because it is able to partially match both modules specified in Cq.
To avoid strict conjunction, we have introduced the constant smoothing factor
of 0.01 in equation 3, such that C1 does not end up with a score of 0. Later,
we could modify the smoothing factor to introduce a (weak) length penalty for
cases or to tune the conjunctiveness of the function. We also note that P (E|F )
is not symmetric. We finally observe that ”length” of the case does not play
a role: both C1 and C3 receive the same score because both match m1. The
non-matching module m4 in C1 does not decrease its score.

We assumed the ”atomic” probabilities p(e|f) as given (by the matrices in
Figure 2). Actually, in case that e and f also have relational properties, the
above equations are applied recursively until basic similarity operations (such as
string similarities or equality checks) can be applied.

We finally need to combine the scores across multiple relationships rk. In
[10], such combination is done via a simple average. A slight generalisation of
that approach would be to use a weighted average:∑

k

αk · simset(Jk1, Jk2),with
∑
k

αk = 1 (4)

where Jkl are again the set of instances that are linked to instance il and the
weights αk reflect the relative influence of relationship (or attribute) rk for de-
termining the overall similarity. In the beginning, such weights may be chosen
based on some kind of “business intuition” – and may later be tuned based on
relevance feedback.

However, in line with the way we have defined P (E|F ) above, we will opt
for a more conjunctive version and replace the weighted sum with a weighted
product:

P (i1|i2) =

n∏
k=1

P (Jk1|Jk2)αk (5)

4 Experimental exemplification

In the following, we will illustrate the behaviour of our proposed new retrieval
function by applying it to a case base and comparing its results to the results of
the cosine function. The case base is synthetic, but it was generated to reflect a
real case that is described in the next subsection.



4.1 Application scenario

We consider the case of ELO Digital Office CH AG1. The company develops and
sells standard software for enterprise content management (ECM) and document
management (DMS). Within their sales processes, ELO experts have to analyse a
large set of requirements and answer questionnaires provided by their customers.
Based on these analyses an offer is made. The time consuming tasks of collecting
information from different project documentations and experts shall be simplified
by storing knowledge from previous projects in a case base and reusing it to
create new project offers.

A typical task during the installation of the ELO standard software in a
company is its integration with any number of existing legacy IT-systems of the
customer. Examples of such systems are enterprise resource planning systems
(ERP), email servers or existing archiving solutions. Hence, case characterisa-
tions comprise a set of such IT systems (“application services”) via the relation
“hasSystem” (see Figure 3).

ELO’s standard software products are modularized. This means that the
solution can be offered as a combination of modules, each solving a certain
problem. Depending on the requirements of the customer, the finally offered
solution will be a configuration with selected modules. In case characterisations,
this is reflected by a relation “hasModule” that can be filled by a set of ELO
modules required by the customer in a given case. The ontology additionally
defines experts for modules with a certain role and level of expertise assigned.
Figure 3 shows the complete ontological case model that forms the schema of
the case base for this scenario.

Figure 3. Case characterisation space

We observe that a relational representation is needed in this scenario – the
relationships between cases and legacy systems cannot be modeled with simple
feature-value pairs because their number is not known in advance and new sys-
tems or new versions of existing systems may appear with every new case.

1 http://www.elo.ch. The company is our partner in the Swiss government funded
research project [sic!].



4.2 Experimental Setup

In a first step, we generated a synthetic case base according to the schema we
just described (see Figure 3) and based on a few case instances orally described
by our project partner.

The basic idea of the generation procedure is that many CBR queries are
formulated with a certain case in mind, i.e. the searcher knows of the existence
of a certain historical case that is similar to the current problem and would like
to retrieve the details of that historical case. We assume that if we are good in
retrieving the ”meant” case in such situations – and in the presence of “noise”,
i.e. cases that were not meant but are also somewhat similar – we have a generally
good retrieval algorithm.

We therefore adopted an approach which, for each of a set of 10 queries,
generates cases that match the given query very closely, less closely and loosely.
More precisely, we implemented the following generation strategy:

1. based on an initial set of data objects representing persons, generate an ex-
tended set P of person data objects such that a set of persons with balanced
number of roles and levels of expertise (beginner, expert) is created

2. based on an initial set of manually created modules (these are real modules
present in the application domain), create an extended set M of modules.
New modules were created with labels where we added 1-2 nouns from the
available module descriptions to an existing label or generated new labels
from those descriptions. To each module m ∈ M , a set of 1-5 randomly
chosen experts p ∈ P is assigned.

3. generate a set A of application services (AS): we start from an initial, manu-
ally created taxonomy of software containing the types of software at the top
level (namely “database”, “ERP” or “DMS”), and the actual name of the
softwares on the next level. For each of the leaves of this high-level taxonomy,
different artificial version names and version numbers of each software were
generated (e.g. “Oracle AB 3.4.1”)

4. create a set C0 of 10 “meant” cases, i.e. cases for the case base for which a
search is simulated: each meant case consists of at least one module m ∈M
and one application service a ∈ A. One additional module or AS can be
inserted at random and with certain probability.

5. For each “meant” case c ∈ C0, create a corresponding query qc that has the
same module m and AS a. To simulate the imperfection of human memory,
the query is then slightly changed: the version name of a is changed with
30% probability, its version number is slightly changed or omitted with 50%
probability. Slightly changing means here that a digit in the version number
is changed on the second or third level (for instance version number “8.2.5”
is changed to “8.2.3”. In addition, the label of the module is slightly changed
with 30% probability, by adding or dropping a noun. This results in a set Q
of 10 queries.

6. Create noise in the form of a set Cw of n weak mutations (we chose n = 5
in our experiments) of each “meant” case c by applying – at random – 2-4
of the following changes to it: a) construct a completely new version of the



AS, b) replace an AS with another one, but of the same type, c) replace a
module with another one that has the same types of experts assigned to it or
d) add a randomly chosen AS or module. We denote the ith weak mutation
of case c with ciw.

7. Create more noise in the form of a set Cs of n strong mutations (again, we
chose n = 5) by applying several of the following operations to each “meant”
case: a) remove one of the modules that appear in the query belonging to the
“meant” case, b) replace it with a completely different one or d) do deletion
or replacement of an AS appearing in the query. We denote the ith strong
mutation of case c with cis.

Thus, with the 10 cases in C0 and the 5 weak and strong mutations per each
c ∈ C0, the case base comprises 110 cases.

4.3 Exemplary retrieval results

In order to illustrate the difference between our new similarity measure and exist-
ing ones, we ran the 10 queries against the case base, using both our probabilistic
retrieval function and the cosine function [10]. We then selected a query (q6) for
which the difference between the results of cosine and probabilistic function was
considerable: query q6 consists of

– a module named ”Replication documents” with attached expert of type man-
ager, expert

– the application service ”WebERP A 5.3.5”

Table 1 shows the top 3 retrieved cases of both rankings and their charac-
teristics. Those elements of a retrieved case that match the query (partially) are
highlighted in bold.

We can observe mainly two things: Firstly, the probabilistic function retrieves
two weak variations of case 6 (61w and 62w) and the “meant” case 6 itself within
the top 3 ranks, all with the same score of 0.863. The two variations are scored
highly because they have a rather perfectly matching module (in terms of both
label and experts) and AS (only version number shows a slight deviation). How-
ever, they both additionally contain two “non-fitting” application services and
one “non-fitting” module. This results in very low scores with cosine (they ap-
pear at rank 21 and 35 in the cosine ranking, not shown here) – i.e. they are
“punished” for their “length”. Considering that a query might be incomplete, we
believe that the asymmetry and associated length penalty of the cosine are sub-
optimal: we expect that a searcher will be able to draw the required knowledge
from the cases 61w and 62w and will simply ignore the non-relevant additional
information that they contain. Hence, it is good to rank them highly.

Secondly, the cosine function does not retrieve any variations of the “meant
case” within the first three ranks. Instead, the cases at the first two ranks of the
cosine ranking (case 5 and 52s) both have an application service that does not



Cosine Probabilistic
Rank case id modules application

services
case id modules application ser-

vices
(score) (expert types) (score) (expert types)

1
5
(0.938)

– Replication
(manager, expert)

– Signature (manager,
expert)

– WebERP
D 9.0 62w

(0.863)

– Replication
(manager, ex-
pert)

– Cold (programmer,
beginner)

– WebERP A
5.3.4

– SQLServer
ABCDE 5.0

– Documentum
ABC 6.3.6

2

52s
(0.929)

– Replication
(manager, expert)

– Signature (manager,
expert)

– teams (TechConsult-
ant, expert; Admin,
beginner)

– WebERP
D 8.6 61w

(0.863)

– Replication
(manager, ex-
pert)

– DocXtractor trains
processing (pro-
grammer, beginner)

– WebERP A
5.3.4

– SQLServer
ABCDE 5.0

– Documentum
ABC 6.3.6

3

91s
(0.864)

– system (manager,
expert; manager,
beginner)

– WebERP
A 5.9.8 6

(0.863)

– Replication
(manager, ex-
pert)

– WebERP A
5.3.4

– MySQL CDE
2.0

Table 1. Top 3 results for q6 with cosine (left) and probabilistic ranking (right)

match very well in terms of version – however, they “compensate” for this mis-
match because they have not only one matching module, but each also contains
another module that matches in terms of the expert signature (i.e. has an expert
manager as responsible person). This shows how the disjunctive nature of the
cosine function allows to increase the score of a case by matching the same query
element (in this case the “Replication” module) several times – something which
has no influence with our probabilistic function because only the best-matching
element is considered by using the max function (see Equation 3). We believe
that results like 5 and 52s are not very useful to a searcher since none of the
application services fits closely – hence, they require a bigger adaptation effort
when re-using the knowledge than e.g. cases 61w and 62w.

All in all, this analysis has shown that both the symmetry and associated
length penalty and the disjunctive nature of cosine lead to – in our opinion
– undesired effects when ranking cases in response to potentially incomplete
queries. The first of these effects – namely strongly down-ranking cases with
additional non-query-related content – will be found also with other symmetric
retrieval functions that are widely used in CBR (e.g. those based on description
logics). Both effects can be avoided by using our new probabilistic retrieval
function.



5 Conclusions and Future Work

This paper has transferred research results from the domain of information re-
trieval (IR) to case-based reasoning (CBR): properties of recent, successful IR
retrieval functions have been used to design a new CBR retrieval function, de-
signed for ontololgy-based, structured case characterisations. Such properties
include strongly conjunctive query interpretation, asymmetry and weak (or no)
penalties for case “length”. Our experimental exemplification has shown how
and to what extent its properties contribute to the differences in ranking w.r.t.
our reference, the cosine function.

Future work may focus on the influence of the weights in the query function
(which we assumed to be uniform in our experiments) and tune them to correctly
meet human requirements.
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for retrieval in case-based reasoning. In: In Procs. of the 1999 Description Logics
Workshop (1999)

9. Gupta, K.M.: Taxonomic conversational case-based reasoning. In: Proceedings of
the Fourth International Conference on CBR. pp. 219–233 (2001)

10. Hefke, M., Zacharias, V., Abecker, A., Wang, Q., Biesalski, E., Breiter, M.: An
Extendable Java Framework for Instance Similarities in Ontologies. In: Proceedings
of ICEIS 2006. pp. 263–269 (2006)
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