Parsing Graphs: Applying Parser Combinators to Graph Traversals

Connected data such as social networks or business process interactions are frequently modeled as graphs, and increasingly often, stored in graph databases. In contrast to relational databases where SQL is the proven query language, there is no established counterpart for graph databases. One way to explore and extract data from a graph database is to specify the structure of paths (partial traversals) through the graph. We show how such traversals can be expressed by combining graph navigation primitives with familiar grammar constructions such as sequencing, choice and repetition – essentially applying the idea of parser combinators to graph traversals. The result is trails, a Scala combinator library that provides an implementation for the neo4j graph database and for the generic graph API blueprints.

Daniel Kröni, Raphael Schweizer | daniel.kroeni@fhnw.ch

Enter the tangled world of Carol where everything centers on friendship and pets. The graph in Figure 1 shows four people, their relationships and their pets.

Carol has a dog and now she is thinking about a cute name. Of course the name should be unique, at least within her circle of friends. She asks herself: “What names did my friends and their friends etc. give their pets?” Here is how she would state that same question after having read this paper:

```scala
val friends = V("Carol") ~ (out- ("loves") | out("likes")).+
val petNames =
  friends ~> out("pet") ^^
  get[String]("name")
```

This code defines a traversal through the given graph by specifying the “grammar” of the paths to be followed. It consists of graph navigation steps (V, out) and combinators (~, ~>, |, +). Applying petNames yields four results:

- (Carol -likes-> Dave -pet-> Fluffy, "Fluffy")
- (Carol -loves-> Bob -pet-> Murphy, "Murphy")
- (Carol -loves-> Bob -likes-> Carol -likes-> Dave -pet-> Fluffy, "Fluffy")
- (Carol -loves-> Bob -loves-> Alice -loves-> Bob -pet-> Murphy, "Murphy")

Each result contains the full path of the traversal plus a designated value, in our case, the name property of the pet. In this paper we describe how this works:

- We develop the datatype of a graph traverser.
- We describe a set of functions that allows us to combine graph navigation primitives into expressive traversal descriptions.

Graph Traversal Combinators

Step-by-step we develop a graph traversal library. First we shape the type of a traverser. In a first approximation, a traverser \(\text{Tr}_5 \) is a function that takes a graph as the input and returns a path as the result. \(\text{Path} \) is a list of graph elements that alternate between nodes and edges.

```scala
type Tr5 = Graph => Path
```

There may be more than one path that fits the specification of a traverser – or none at all. We account for this by letting the result be a \(\text{Stream} \) of paths, as proposed by Wadler [3]. \(\text{Stream} \) allows us to lazily yield result paths on demand rather than to eagerly compute all results.

```scala
type Tr4 = Graph => Stream[Path]
```

A traverser may start with an empty path, but usually it describes an extension of the preceding path. To model this scenario we extend the type of traverser and add the preceding path as a further input parameter:

```scala
type Tr3[+A] = Graph => Path => Stream[(Path, A)]
```

We extend the library by cycle detection, labeling functionality and subqueries to allow even more elegant traversals.
There is no reason to restrict Tr_2 to $Graph$ and $Path$. We will see that a traverser may read from any environment E, it may transform some state S and it may yield potentially multiple results:

$$type\ Tr_2[-E,S,+A] = E \Rightarrow S \Rightarrow Stream[(S,A)]$$

In this sense, it is a very general structure. In fact, Hutton’s and Meijer’s monadic parsers [1] are using this type for parsing strings. This is because a $List[Char]$ is a graph:

$$List[Char]$$

When parsing text, the state is the string being consumed. In contrast, when traversing a graph, we build up the path, which is the sequence of visited nodes and edges. Depending on the head of a path there are different steps we can take. On an edge, for example, it makes no sense to ask for outgoing edges which are only available on nodes.

To accommodate this fact, we differentiate between the input state type I and the output state type O. This allows us to statically express whether a traverser expects a node or an edge and thereby rejecting meaningless patterns during compilation.

$$type\ Tr[-E,-I,+O,+A] = E \Rightarrow I \Rightarrow Stream[(O,A)]$$

The above is the type of traversers we will use in the following discussion. It is worth noting that it combines three well known monads:
- Nondeterminism: The multiple results of a traverser, represented as a $Stream$.
- Indexed-State: The state which is threaded through – potentially changing its type from I to O.
- Reader: The read-only environment E which is passed to each traverser.

Given the type Tr, we can explore primitive graph navigation traversers as well as grammar-like combinator.

Traverser Primitives

The two most basic traversers are $success$ and $fail$. $success$ creates a traverser that always succeeds with the given value a, leaving the state untouched. $fail$ is a traverser that contains no results – a dead end, which allows no further traversal:

```scala
def success[E, S, A](a: A): Tr[E, S, S, A] = _ => s => Stream((s,a))
def fail[E, S, A]: Tr[E, S, S, A] = _ => _ => Stream()
```

In a similar fashion, we define the three traversers $getEnv$ to read the environment, $getState$ to read the state, and $setState$ to write the state. Below are their signatures:

```scala
import org.neo4j.{graphdb => neo4j}
type GraphAPI = neo4j.GraphDatabaseService
type Elem = neo4j.PropertyContainer
type Node <: Elem = neo4j.Node
type Edge <: Elem = neo4j.Relationship
case class State[+Head <: Elem](path: List[Elem])
```

As an example, we will look at $outE$’s function signature:

```scala
def outE(tagName: String): Tr[GraphAPI,State[Node],State[Edge],Edge]
```

This function takes a graph and a path that ends in a $Node$ and from there it steps onto all outgoing $Edges$ with the given $tagName$. This leads to paths which end in an $Edge$. Together, this edge is then returned with the extended path.

In order to access properties on nodes and edges, the function get must be implemented as well:

```scala
def get[A](key: String)(e: Elem): A
```

These primitives will be combined into powerful traversal definitions.
Traverser Combinators

We now want to combine these primitive traversers into complex path expressions, which results again in traversers. This property is a key to their compositional nature.

The following table shows the name of those combinators as well as the sugar we provide to concisely express traversals:

<table>
<thead>
<tr>
<th>Function</th>
<th>Sugar</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq</td>
<td>a ~ b</td>
<td>First a then b</td>
</tr>
<tr>
<td>choice</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>opt</td>
<td>a.?</td>
<td>Repeat 0..1</td>
</tr>
<tr>
<td>many</td>
<td>a.*</td>
<td>Repeat 0..n</td>
</tr>
<tr>
<td>many1</td>
<td>a.+</td>
<td>Repeat 1..n</td>
</tr>
</tbody>
</table>

`flatMap` is used to sequentially combine any two traversers. It passes through the same environment to both traversers, threads the state through the first traverser into the second one and returns the final states together with the results:

```scala
e => i => tr(e)(i).flatMap {
case (m,a) => f(a)(e)(m)
}
```

Note that the inner `flatMap` is called on `Stream`, and how the different input and output state types `I`, `M` and `O` line up – from `_[_,I,M,_]` and `_[_,M,O,_]` to `_[_,I,O,_]`. To allow recursive definitions, all combinators take their traverser arguments by-name.

`Tr` together with `flatMap` and `success` becomes a structure that is slightly more general than monadic, due to the state types [4]. Luckily, Scala’s for-comprehension does not worry about this.

Now `map` and `filter`, using `flatMap`, `success` and `fail`, can be implemented as follows:

```scala
def map[E,I,O,A,B](tr: => Tr[E,I,O,A]): Tr[E,I,O,B] =
flatMap(tr)(a => success(f(a)))
success(a) else fail
```

There is another, less powerful but often sufficient way to sequentially combine two traversers. `seq` does not use the result of the first traverser to obtain the subsequent traverser as in `flatMap` but simply returns both values in a fancy-looking tuple named `~`:

```scala
case class ~[+A,+B](a: A, b: B)
for(a <- fst; b <- snd)
yield new ~(a,b)
```

The related functions `~` -> and <- return the whole tuple, the right-hand-side and the left-hand side. These functions as well as the infix sugar for `map` are courtesy of Scala’s parser combinators [2, 727-755]. They allow the writing of good-looking sequential compositions of traversers such as `out` which first navigates from a node to an outgoing edge and from there to the target node:

```scala
def out(tagName: String): Tr[GraphAPI,State[Node],State[Node],Node] =
outE(tagName) ~> inV()
```

In addition to the above sequencing function, a means is needed to express branching: `choice`. Since we are interested in all matching result paths this combinator follows both arguments using the same state and concatenates `#:::` their results. This is different to typical combinator parsers which for reason of speed often try the second alternative only if the first one fails:

```scala
def choice[E,I,O,A](
  either: => Tr[E,I,O,A],
or: => Tr[E,I,O,A]): Tr[E,I,O,A] =
e => i => either(e)(i) #::: or(e)(i)
```

Now we have all the ingredients to implement `opt`, `many` and `many1`. Note that they restrict their argument traverser to start and end on the same state type `S`. The implementations are straightforward:

```scala
def opt[E,S,A](tr: => Tr[E,S,S,A]): Tr[E,S,S,Option[A]] =
choice(success(None),
map(tr)(Some[A](_)))
def many[E,S,A](tr: => Tr[E,S,S,A]): Tr[E,S,S,Stream[A]] =
choice(success(Stream()), many1(tr))
def many1[E,S,A](tr: => Tr[E,S,S,A]): Tr[E,S,S,Stream[A]] =
for(a <- tr; as <- many(tr))
yield a #:: as
```

This concludes the basic functionality of our graph traversal combinators. Improvements to this minimalistic design are discussed in the further sections. We make our traversers cycle-aware and add the ability to label values, which can then be referred to in queries. Finally we show how to implement subqueries.

Cycle Detection

Consider the following traverser:

```scala
V("Alice") ~> (out("loves") | out("likes"))+
```

Since there is no inherent ordering of the edges, a possible sequence of result paths could look like this:

```
Alice -loves-> Bob
Alice -loves-> Bob -loves-> Alice
```
Alice -loves-> Bob -loves-> Alice -loves-> Bob

The given implementation would never stop generating longer and longer expansions of the cycle and never yield the following path: Alice -likes-> Carol.

Note that the queried graph does not need to contain cycles: e.g. (out("pet") ~ in("pet")).+ is problematic by itself.

In general the application of many and many1 may cause problems. Clearly this behavior is undesirable. Cycles should be detected and handled appropriately. Our implementation adheres to the following definition: If, within an application of many or many1, the repeated traverser yields the same snippet a second time, then it is a cycle. Consistent with our definition this path, Carol -loves-> Bob -loves-> Alice -likes-> Carol -loves-> Bob -pet-> Murphy, is discarded from the result mentioned in the introduction due to the repeated -loves-> Bob snippet.

Detecting cycles requires the snippets to be tracked, therefore we extend the state:

\[
\text{case class State[+Head <: Elem] (path: List[Elem], cycles: Set[List[Elem]])}
\]

For the sake of simplicity our implementation follows cycles only once, which might be returned as part of the result as well.

Labels
As a further extension, we allow the values that are emitted by a traverser to be labeled. This requires additional state of type Map[String, List[Any]] which maps a label to a list of values. Why use a list of values and not just a single value? The answer is that labeling inside a repetition might produce more than one value, or perhaps none at all.

For example an application of labels is looking for unhappy lovers – people who love another person but that person does not return this love:

\[
\text{val unhappyLovers = for {}
 beloved <- V.as("lvr") ~
 out("loves") ~ out("loves")
 lover <- label("lvr") if
 !lover.contains(beloved)
 } yield lover}
\]

Executing this query on the introductory graph yields the single node Carol.

Subqueries
The last extension we implement are subqueries. Essentially subqueries are traversers whose values are preserved while their state changes are discarded. Thus subqueries allow to “match” patterns without having the matched paths polluting the result. Here is the definition of sub which runs its argument tr as a subquery and in turn yields the stream of tr’s results:

\[
\text{def sub[E, I, O, A](tr: Tr[E, I, O, A]) : Tr[E, I, I, Stream[A]] =}
\text{e => i => Stream((i, tr(e)(i).map(_._2)))}
\]

Using sub we can search for beloved pet owners:

\[
\text{val belovedPetOwners = for {}
 petOwner <- V
 pets <- sub(out("pet"))
 if pets.nonEmpty
 lover <- in("loves")
 } yield (petOwner, lover)}
\]

This yields (Carol -loves-> Bob, (Bob, Carol)) and (Alice -loves-> Bob, (Bob, Alice)). Note that the pets do not show up in the result.

Conclusion and Related Work
We have developed a simple combinator library to concisely express graph traversals. It is currently being evaluated and extended in the context of a business intelligence project [10]. Ongoing work can be observed on the trails webpage [6].

To access information stored in graph databases we have found low-level APIs, imperative, embedded graph traversal languages such as the Gremlin family [9] and declarative approaches e.g. Cypher [11] or SPARQL [12]. While others stress expressiveness or good computational complexity [5] trails focuses on simplicity – in terms of an educational value, implementation and application.

References