
39IMVS Fokus Report 2014

MicroCore is a dual stack, Harvard architecture
with three memory areas that can be accessed in
parallel: data stack (RAM), data memory and re-
turn stack (RAM), and program memory (ROM).
All instructions without exception are 8 bit wide,
and they are stored in the program memory ROM.
Due to the way literal values can be concatenat-
ed from sequences of literal instructions, all data
paths and memories are scalable to any word
width as long as the needed address space can
be represented. Figure 1 shows the MicroCore’s
structure [7].

One special feature of MicroCore is the pos-
sibility to define more complex Forth words by
creating new CPU instructions that later can be
implemented via VHDL in FPGA hardware. The
synchronous simple design of MicroCore is tai-
lored toward an easy and cheap implementation
in FPGA. Version 1.71 of MicroCore (the current
specification) introduces a new and better subset
of Forth as a machine language especially tailored
for cryptological calculations. A simple VHDL in-
terpreter allows the cross compiler to load “CON-
STANTS.VHD”, which defines hardware features
and opcode mnemonics. MicroCore/MicroForth
thus evolves to a co-design environment. Every
change in the hardware is unambiguously brought
forward to the cross compiler. It is guaranteed by
design that names of hardware characteristics
are spelled the same in VHDL and in Forth, and
that they have identical values.

The control part of MicroCore (see Fig. 2) is
represented by a decentralized Moore-FSM (Finite
State Machine) whose next state is determined by
the decoder. Decentralized means that semi-au-
tonomous parts of the data path (i.e. the local- and
data-stack) are directly fed by the decoder. Why
decentralized? For two reasons: firstly, the logic
of the FSM is simpler, and secondly, the VHDL de-

1	 This work was partially funded by the Hasler Foundation
Grant no. 12002 “An optimized CPU architecture for cryptologi-
cal functions”.

scription maps more gracefully into the hardware
components.

The data-path (Fig. 3) regulates the flow of
operands to or from the two stacks. We have not
littered the picture with all the necessary mul-
tiplexers in order to better illustrate the under-
lying structure. TOR, PC, DSP and RSP (Table 1
lists the most important abbreviations) each have
a primitive n-bit-adder, because of the increment/
decrement and push/pop instructions associated
with them. Please, notice that manipulations of
DSP, RSP, PC and INST occur simultaneously and
can be done within a single clock cycle. All regis-
ters, stacks, and internal busses are n-bit wide.
Since a MicroCore’s instruction is 8 bit long we
can store k = n/8 instructions per clock cycle in
INST, transforming in fact the register INST into
a small cache.

The data-path is made up of the data-stack,
the ALU and of the data memory and return
stack. Registers TOS and NOS feed the ALU. TOR
allows not only for a decrement-and-branch in-
struction that can be nested, but also for complex
math instructions like multiply, divide or vector
multiply. Adding the TASK register will support
a multi-tasking OS with a base-index address-

Software/Hardware Co-design:
Crypto MicroCore

MicroCore is a dual stack, Harvard architecture with three memory areas that can be accessed in parallel.
One special feature of MicroCore is the possibility to define more complex Forth words by creating new
CPU instructions that later can be implemented via VHDL in FPGA hardware. In our project1 we developed
a new version of the MicroCore C-compiler based on lcc, a fully ANSI-C compliant compiler. The compiler
generates from C-Code MicroCore instructions for the 1.71 version which are sent to the target hardware
with the MicroForth-loader. We built in optimizations for the global stack allocations, first suggested by the
group of Chris Bayley at the University of York. We tested our compiler with the BLAKE hash algorithm,
implemented both in compiled MicroCore code and with BLAKE-optimized instructions directly coded in
hardware via VHDL.

Markus Knecht, Willi Meier, Klaus Schleisiek, Carlo U. Nicola | carlo.nicola@fhnw.ch

Figure 1: Overview of MicroCore

40 IMVS Fokus Report 2014

ing mode into the task control block. Indexed ad-
dressing into the return stack gives single cycle
access to local variables. The data stack is real-
ized by a single port RAM used as stack under the
control of the DSP, and the topmost stack item is
held in the TOS register. Typically, the size of the
data-stack memory needed will be small enough
to fit inside the FPGA.

IO is data memory mapped and the most sig-
nificant address bit selects the external world
when set. In addition, program memory may be
mapped into the lower part of the IO address
space for von Neumann style read and write ac-
cess in two cycles during the development phase.
If the most significant address bit is not set, da-
ta-memory and return stack RAM is selected. The
return-stack grows towards lower addresses and
typically occupies the upper end of data memory
under the control of Return-Stack-Pointer RSP.
Both data and program memory may use inter-
nal FPGA block-RAM as “caches” and therefore,
MicroCore can run as a “single chip controller”
inside an FPGA without any external memory

needs. Several data memory access instructions
are available:
•	 Absolute addressing with the address in the

TOS register and a three-bit-signed pre-incre-
ment/decrement in the instruction (ld, st);

•	 Indexed addressing relative to the RSP for lo-
cal variable access (lld, lst);

•	 Indexed addressing relative to the TASK regis-
ter (tld, tst).

After each memory access, the absolute memory
address that had been accessed will remain in
TOS. Data transfer takes place between the second
data-stack element NOS and memory/IO.

The Sequencer generates the program-memory
address for the next instruction, which can have a
number of sources:
•	 the PC for a sequential instruction;
•	 the ALU for a relative branch or call;
•	 the TOS register for an absolute branch or call;
•	 the TOR register for a return instruction;
•	 the INSTruction register for an immediate call

(soft instruction);
•	 the fixed Interrupt Service Routine address

(ISR) as part of an interrupt acknowledge cycle;
•	 the fixed Exception Service Routine address

(ESR) during an exception cycle;
•	 the fixed Overflow Service Routine address

(OSR) for a conditional service routine on over-
flow.

In the code, uBus has been defined as a record
of signals that are needed in several entities: the
data memory and I/O signals, a selection address
for the internal registers, an array of all register
outputs so as to simplify adding application spe-
cific registers. For better and easier code main-
tenance, instruction decoding and status register
bit processing have been centralized since version
1.50 in a single file “uCore.vhd”.

In Figure 4 we show the MicroCore develop-
ment board we used throughout this work.

Figure 2: The control unit. n, m, k: number of control lines de-
pendent in general from the width in bits of the data bus and the
CPI (Clock Per Instruction).

Figure 3: The data path. (1) Because of ++!, ...: 3 bit increment
value will be added to TOS; (2) push and pop multiplexer lines;
(3) direct way to save next instruction’s address during call, int,
...; ALU top input: RSP, NOS, TASK, PC (not all connections are
shown in this simplified representation).

STATUS

Status register with eight 1-bit flags: C = Carry,
OVFL = Overflow, IE = Interrupt Enable,
IIS = Interrupt In Service, LIT = Literal,
N = Sign flag, ZF/DIV = Zero Flag,
TIMES = Counter for TIMES instruction.

INST Instruction register

TOS, NOS,
DSP

Top Of Stack register, Next Of Stack register,
Data Stack Pointer. All work together with the
data-stack (DS).

TOR, RSP
Top Of Return stack register, Return Stack
Pointer. This set of registers works with the
return-stack (RS).

PC Program Counter register

TASK
Register whose content points to the Task
Control Block (TAB).

Table 1: Glossary of the abbreviations we use to describe the
data path

41IMVS Fokus Report 2014

MicroCore Instruction Set Architecture (ISA)
All MicroCore instructions are 8 bit wide. If the
7th bit is set, the instruction is interpreted as a
7 bit literal (LIT). LIT can be joined to form ar-
bitrary long integers, which are stored in the op-
erand stack. Two LITs build a LITERAL (a 16-bit
number in two’s complement format). It is a com-
piler’s task to preserve the correct sign when join-
ing many LIT together. The data size is thus inde-
pendent from that of the instruction. As shown in
Figure 5 all instructions are partitioned in fields,
whose width in bit remains always constant. The
instruction set architecture is based upon the
Forth language.

The MicroCore’s ISA implements a rich sub-
set of the Forth language. Why, Forth? Forth has
evolved in the last thirty years through natural
selection in the embedded systems niche, a simple
but powerful group of instructions that are well
understood and whose side effects are empirically
well known. We shall show in Tables 2-4 how to
encode the three opcode’s format fields.

With the encodings in Tables 2, 3, and 4 we
can now synthesize meaningful Forth words, as
Table 5 shows. The symbol - in the column LIT
means that the previous instruction was an op-
code; whereas when the symbol changes to +, that
it was a LIT. In this case we get a new LIT on TOS.
A * means, as always, don’t care.

The regular structure of the three fields (Type,
Stack, Group) and the constant bit format of all
instructions simplify enormously the complexity
of the decoder. However, we hasten to add that the
encoding of the Forth words is not entirely satis-
factory: for example, we had to use the stack field
NONE to push or pop data into the local stack.
This represents not only a breach in the orthogo-

nality of the ISA, but more seriously, a supplemen-
tary hardware layer in the decoder.

For the crypto version of MicroCore we intro-
duced some new instructions:

ROT32: Instead of times we define rot32:
ROT32 (32b n - 32b’)

Label (<name> -), C: Compiles <name> into the
dictionary as a constant, which holds the current
program memory address. If <name> is the des-
tination of a preceding GOTO, ?GOTO, or CALL,
pending forward references will be resolved.

GOTO (<name> -), C: Compiles an uncondition-
al branch to <name>. <name> may be a label or co-
lon definition. GOTO supports forward referenc-
ing, i.e. the name of the label or colon definition
that follows may be defined later on.

?GOTO (<name> -), C (zero: n -) (sign: n -) (
carry: -) (ovfl: -): Compiles a conditional branch
to <name>. <name> may be a label or colon defini-
tion. ?GOTO supports forward referencing, i.e. the
name of the label or colon definition that follows
may be defined later on.
•	 ?GOTO compiles 0<>branch
•	 0= ?GOTO compiles 0=branch

Figure 4: The MicroCore development board. The large chip
is the Lattice LFXP2-17E-5Q208C FPGA into which we imple-
mented the different versions of MicroCore. Size: 94 x 70 mm.

7
$80

6
$40

5
$20

4
$10

3
$8

2
$4

1
$2

0
$1

Lit/Op Type Stack Group

Figure 5: The format of an instruction

Code Name Action

00 BRA Branches, calls and returns

01 ALU Binary and unary operations

10 MEM Data memory and register access

11 USR
Free for application specific extensions.
As to version 1.71, 26 user defined
extensions are possible.

Table 2: Type field encoding

Code Name Action

00 NONE Dependent on type field encoding

01 PUSH TOS à NOS à Stack

10 POP Stack à NOS à TOS

11 BOTH Dependent on type field encoding

Table 3: Stack field encoding

Code Binary
Operation

Unary
Operation Condition Register

000 add not never status

001 sub sl zero tor

010 adc asr sign rstack

011 sbc lsr carry local

100 and ror pause rsp

101 or rol int dsp

110 xor zequ dbr task

111 nos cc always flags

Table 4: Group field encoding. The group field determines op-
erations, conditions, and registers in dependence on type field
encoding. The different type fields behave as follows: ALU
specifies binary and unary operations; BRA specifies the condi-
tions under which a jump is executed; MEM specifies a register
name.

42 IMVS Fokus Report 2014

•	 0< ?GOTO compiles s-branch
•	 0< 0= ?GOTO compiles ns-branch
•	 carry? ?GOTO compiles carry? IF ELSE GOTO

THEN
•	 carry? 0= ?GOTO compiles nc-branch
•	 ovfl? ?GOTO compiles ovfl? IF ELSE GOTO

THEN
•	 ovfl? 0= ?GOTO compiles no-branch

CALL(<name> -), C: Compiles an unconditional
call to <name>. <name> may be a label or colon
definition. CALL supports forward referencing,
i.e. the name of the label or colon definition that
follows may be defined later on.

A synchronized RESET signal resets all regis-
ters to zero with the exception of the INST regis-
ter. Instead, INST loads the code for a NOP [BRA
NONE NEVER] and therefore, the instruction
whose address is in PC (which has been reset to
zero!) will be fetched during the first cycle (which
is the NOP instruction).

Exceptions
MicroCore knows only one type of exception; hard-
ware interrupts. They are synchronized with the
internal clock and are answered at the end of the
actual clock cycle, if the IE bit in STATUS register
is set. During the first clock cycle after granting
the interrupt request, MicroCore:
1.	 stores the already correct next instruction’s

address into PC without any increment, and
2.	 loads the hard-wired instruction BRA BOTH

INT into IR. This call instruction selects the
hard-wired address of the interrupt handler.

During the second clock cycle, after granting the
interrupt request, MicroCore:
1.	 executes the instruction BRA BOTH INT. That

means two things: transfer of the content of
the STATUS register on the Stack and of the
content of the PC on the L-Stack; and

2.	 loads the first instruction of the interrupt han-
dler, since its address was already prepared
during the first cycle.

In summary, only the first INT-cycle must be per-
formed by special hardware. The second cycle

(INT-instruction) is executed by an instruction
which is forced into the INST register during the
first interrupt acknowledge cycle. During the
STATUS register’s transfer on the stack, the IIS bit
is automatically set. New interrupt requests are
from now on granted, only if we explicitly set IE
and reset IIS.

Whenever an interrupt source is asserted,
whose corresponding interrupt-enable bit is set in
the IE-register, its associated bit in the FLAGS-reg-
ister will be set and an interrupt condition exists.
An interrupt acknowledge cycle will be executed
when the processor is not currently executing an
interrupt (IIS-bit not set) and interrupts are glob-
ally enabled (IE-bit of the STATUS-register set).
Please, note that neither the call to the ISR-ad-
dress nor reading the FLAGS-register will clear
the FLAGS-register. It is the responsibility of each
single interrupt server to de-assert its interrupt
signal as part of its interrupt service routine.

Software Development
An interactive software development environment
for uCore is rather straightforward and it has
been realized under Linux and Windows on top
of gforth under GNU GPL conditions. A “debugga-
ble uCore” has an additional umbilical interface
that can be controlled by a two-wire UART (RxD,
TxD) interface on the host computer. The program
memory, which must be realized as a RAM, can
be loaded through this interface. After loading the
application, a small debug monitor takes control
and is exchanging messages with the host.

The following tasks can be done under control
of a host computer:
•	 loading a program into uCore’s program mem-

ory;
•	 resetting uCore;
•	 single-step debugging uCore with breakpoints;
•	 observing variables, buffer areas, semaphores,

and the task list.
It loads on top of gforth (Windows and Linux), an
open source 32 bit implementation of Forth. It can
produce a binary image and a symbol table file

Forth LIT Implementation Comments

NOP * BRA NONE NEVER No Operation; 0 à LIT

>R * MEM NONE RSTACK Stack à NOS à TOS à R-Stack

R> * MEM BOTH RSTACK R-Stack à TOS à NOS à Stack

OVER * ALU PUSH NOS

+ * ALU POP ADD Stack à NOS<+>TOS à TOS

- * ALU POP SUB Stack à NOS<->TOS à TOS

AND * ALU POP AND Stack à NOS<AND>TOS à TOS

BRANCH -/+ BRA POP ALWAYS Absolute 3, relative 2 clock cycles

CALL -/+ BRA BOTH ALWAYS Absolute 3, relative 2 clock cycles

EXIT * BRA NONE ALWAYS

L@ * MEM BOTH LOCAL LS[RSP + relAddr] à TOS

Table 5: Forth words encoding

43IMVS Fokus Report 2014

for the debugger, a VHDL file for simulation, and
a MEM file for FPGA blockRAM configuration.
Because the Forth systems are 32-bit systems,
the cross-compiler only supports numbers of up
to 32-bits signed magnitude. For larger data path
widths, the cross compiler has to be extended ac-
cordingly if larger numbers need to be compiled.

It is a short but rather complex piece of code.
Several peep hole optimizations have been imple-
mented and the cross-compiler is of production
quality.

lcc for MicroCore
We adapted the excellent ANSI-scc2 [8] for gener-
ating MicroCore code. The scc is based on the lcc3.
We highly recommend our few readers to get their
hands on a copy of Hanson and Fraser’s book [3]
that describes in greater details the workings of
lcc. We will here describe the interface between
scc and Microcore in some detail, and only briefly
skim (as need arises!) over the inner workings of
the compiler.

Stack-based CPUs do not permit to address in a
simple manner the single slots of the stack where
the parameters for a procedure call are temporari-
ly stored. All allocation algorithms that work well
with register-based CPUs are useless for stack-
based CPUs, since registers are individual random
addressable slots of memory. The problem arises
as how to allocate efficiently stack memory’s slots
for inter- and intra-procedure calls. Koopman [4]
shows how to optimize the former, and Shannon
[8] how to optimize the latter. Both algorithms are
implemented in scc. For a good overview of the
problem of global stack allocation, see [2].

The lcc consists of a front end and a back end.
The former produces a meta representation of a
C-program and the latter describes the ISA. The
meta representation of the C-program is unfortu-
nately not totally independent from the back end.
A special structure (the interface) is responsible
for the exchange of information between the two.
We need to specify for example the data’s align-
ment and type, the byte order (little or big endi-
an), and for a typical lcc, the set of registers. In
our case we must find a way to accommodate the
stack structure of MicroCore within this register
structure.

We will now discuss the changes we made in
scc, to adjust it to the ISA of MicroCore.

The Meta representation
The C-Code is translated into a sequence of Direct-
ed Acyclic Graphs (DAGs) in such a way that each
C-function is represented by a forest of DAGs.
The DAG’s nodes represent the primitive opera-
tions. Figure 6 shows the DAG-tree for the simple
C-statement y = x[2] + 4. The processing of this

2	 scc = stack C compiler compiler
3	 lcc = lean C compiler

DAG-tree necessitates following rules (for more
details, see [6]):

stmt: ASGNI4(stk, lAddr) "#\n" 2
stk: INDIRI4(lAddr) "#\n" 2
stk: CNSTI4 "%a\n" 1
stk: LSHI4(stk, stk) "shift\n" 1+
 (DATA_WIDTH+1)/2

DAG’s nodes are assembled with three criteria: (1)
type of operation, (2) data type and (3) size of data
type. The following example illustrates the prin-
ciple:

ADD + I + 4 -> ADDI4

The size is always given in number of bytes. In our
example the size is 4 bytes. Each node may have a
variable number (between 0 and 2) of kids. Kids
are nodes or terminal leaves. The interested read-
er will find in [6] the complete table with all types
of nodes lcc supports.

We have defined following specific non-termi-
nals for MicroCore:
•	 const: a constant;
•	 zero: constant 0;
•	 const1: constant 1;
•	 lAddr: the address of a local variable;
•	 addr: the address of a global variable, of a

branch or of a dereferenced pointer (that means
that all pointers contain absolute addresses.);

•	 jAddr: the address of a function;
•	 stk: represents a stack slot.

The full set of MicroCore’s specific rules are
shown in [6]. Here we illustrate them with a few
examples. From the fact that all MicroCore’s
pointers may contain addresses or data, we derive
the following rules:

addr: INDIRP4(sread) “\n” 0
addr: INDIRP4(lAddr) “#\n” 2
addr: INDIRP4(addr) “@\n” 1

Figure 6: A typical DAG tree for the C statement: y = x[2] + 4.
Picture adapted from [8].

44 IMVS Fokus Report 2014

Where:
lAddr: ADDRLP4 "%a" 1
/* No \n so must be printed by assig/indir */
addr: CNSTP4 "#\n" 1
sread: COPYP "dup\n" range(a, 1, 1)+1
sread: COPYP "over\n" range(a, 2, 2)+1
sread: COPYP "2over\nnip\n" range(a, 3, 3)+2
sread: COPYP "any\n" range(a, 0, 0)+1

For example, addr: INDIRP4(addr) “@\n” fetch-
es data from a constant address of variable size.
When scc sees the token ‘\#’ in a rule, then it
stops the evaluation of all the sub-trees which
grow from that node, and it jumps to the func-
tion emit2() that calculates the exact size of the
address (see [6]). The fourth column contains the
cost (correct or guessed clock cycles per instruc-
tion) of the DAG-node. The compiler tries to con-
struct a DAG-tree with minimal cost.

Optimizations
As we already observed, a stack-based CPU does
not have single named registers that we can ac-
cess in a random manner. On the contrary, we can
access the slots of a stack only through stack op-
erators like swap, over, etc. This fact makes all
register allocation algorithms useless. We will

not discuss here the equivalent algorithms for
stack allocation, as they are very well explained
in [4] and [2]. We give below a non-trivial example,
which shows the working of these algorithms by
generating MicroCore Forth code.

We examine the program mutual recursion to
show how the intra- and inter-procedure optimi-
zation from [4] and [8] works.

int mRecFun(int cU, int cD){
 if(cD == 0){
 return cU;
 } else if(cD%2 == 0){
 return mRecFun2(++cU,--cD);
 } else {
 return mRecFun(++cU,--cD);
 }
}
int mRecFun2(int cU, int cD){
 if(cD == 0){
 return cU;
 } else if(cD%2 == 1){
 return mRecFun(++cU,--cD);
 } else {
 return mRecFun2(++cU,--cD);
 }
}

First we give in Listing 1 the MicroCore code
without the local/global stack optimizations. The

(MicroCore(TM) uForth) decimal : _mRecFun
 0 >r rsp@ 3 - rsp!
 (allocate 3 local variables)
 6 l@ ?GOTO LABEL_2
 (jump if not equal)
 5 l@ (return int)
 GOTO LABEL_1
Label LABEL_2
 6 l@ 2 mod ?GOTO LABEL_4
 (jump if not equal)
 6 l@ 1- 3 l!
 3 l@ 6 l!
 3 l@ >r (push int parameter 1)
 6 l@ 1+ 3 l!
 3 l@ 6 l!
 3 l@ >r (push int parameter 2)
 CALL _mRecFun2 (call to function)
 rdrop rdrop (deallocate 2 parameters)
 (tos) 1 l!
 1 l@ (return int)
 GOTO LABEL_1
Label LABEL_4
 6 l@ 1- 3 l!
 3 l@ 6 l!
 3 l@ >r (push int parameter 1)
 6 l@ 1+ 3 l!
 3 l@ 6 l!
 3 l@ >r (push int parameter 2)
 RECURSE (recursive call to function)
 rdrop rdrop (deallocate 2 parameters)
 (tos) 1 l!
 1 l@ (return int)
Label LABEL_1
 rdrop rdrop rdrop rdrop
 (deallocate 3 local Variables)
;

Listing 1: MicroCore code without stack optimizations

decimal : _mRecFun (2 parameters)
 swap swap dup 0 -
 ?GOTO lbl_2 (jump if not equal)
 drop (return int)
 GOTO lbl_1
 Label lbl_2
 dup 2 mod 0 -
 ?GOTO lbl_4 (jump if not equal)
 swap 1+ swap swap swap 1-
 swap swap
 CALL _mRecFun2 (call to function)
 (return int)
 GOTO lbl_1
 Label lbl_4
 swap 1+ swap swap swap 1-
 swap swap
 RECURSE (recursive call to function)
 (return int)
 Label lbl_1
;
: _mRecFun2 (2 parameters)
 swap swap dup 0 -
 ?GOTO lbl_7 (jump if not equal)
 drop (return int)
 GOTO lbl_6
 Label lbl_7
 dup 2 mod 1 -
 ?GOTO lbl_9 (jump if not equal)
 swap 1+ swap swap swap 1-
 swap swap
 _mRecFun (return int)
 GOTO lbl_6
 Label lbl_9
 swap 1+ swap swap swap 1-
 swap swap
 RECURSE (recursive call to function)
 (return int)
 Label lbl_6
;

Listing 2: MicroCore code with stack optimizations

45IMVS Fokus Report 2014

multiple use of l@ means that the local variables
are temporarily stored outside the stack, thus in-
creasing the time to access them. The optimized
version of the program is given in Listing 2.
All the temporarily defined local variables remain
on the stack and are accessed through normal
stack operations like -rot, dup or drop.

The peephole optimization is carried out by the
Forth cross-compiler whose responsibility is the
transfer of the MicroCore Forth code to the target.

The cryptological function in Hardware
We used the BLAKE hash algorithm [1] in order
to locate those cryptological functions that con-
sume the most CPU cycles. The whys of this choice
are explained elsewhere [5][6]. BLAKE security
was evaluated by NIST in the SHA-3 process as
having a “very large security margin”, and the
cryptanalysis published on BLAKE was noted as
having “a great deal of depth”. The BLAKE hash
function comes in a family of four hash func-
tions: BLAKE-224, BLAKE-256, BLAKE-384 and
BLAKE-512. BLAKE-256 is based on 32-bit words,
whereas BLAKE-512 on 64-bit words, from which
the other members of hash functions are derived.

BLAKE uses only three basic operations: inte-
ger addition, xor ‘⊕’, and rotation ‘<<<’ (i.e., a cir-
cular shift given by a prescribed shift amount).

The G-function is the core of BLAKE and the
source of its security against differential attacks
[1]. Each G-function of BLAKE, G

i
(a,b,c,d) at round

r operates on four selected words a,b,c,d of a 4 x 4
square of state words, and sets:

a := a+b+(ms(r,2i) ⊕ cs(r,2i+1))
d := (d ⊕ a) <<< 16
c := c+d
b := (b ⊕ c) <<< 12
a := a+b+(ms(r,2i+1) ⊕ cs(r,2i))
d := (d ⊕ a) <<< 8
c := c+d
b := (b ⊕ c) <<< 7

Here, s denotes a specified permutation of num-
bers between 0 and 15, and the m

k
 denotes mes-

sage words. The G-function performs six integer
additions, six xors, and four word rotations. Apart

from the permutation s, the time consumption of
each of the operations involved in the computation
of a G-function has to be inspected. The rotation
amounts in the second and fourth assignments
differ, and are not always a power of two.

Performance with gcc
For performance measurements, a computer with
the following technical characteristics has been
used: CPU Intel(R) Core i7 M 640 at 2.80 GHz; 2
GiB DIMM-Memory at 1333 MHz, 4 MiB external
Cache, 320 GiB of permanent storage.

As the G-function is composed of the opera-
tions, (unsigned) integer addition, xor and rota-
tion, the time consumption of these operations is
measured and compared individually. To obtain
reproducible and measurable quantities, each
measurement has been executed 108 times (see Ta-
ble 6). We give in Listing 3 the reference imple-
mentation of the G-function.

The measurements have been done using the
C-function clock(). Timings for differing rotation
amounts in the rotation operation don’t vary sig-
nificantly. Note however, that rotation amounts
that are a multiple of 8 can be implemented by
just reordering bytes, which is often faster than
shifting the words. For measurements, rotation
has been implemented as in the official BLAKE
document, as an ANSI C-preprocessor macro. As a
result, rotation is the most time consuming oper-
ation (see Table 6). When looking at assignments,
the first and fifth assignments are more time con-
suming than the others, as they involve more ba-
sic operations plus a permutation of 16 words.

Performance with scc
We only show an example of the performance
measurements before and after the hardware im-
plementation of the ROT32(x,n) function. The full
set of measurements is available upon request. We

#define ROT32(x,n) ((((x) << (32-(n))) | ((x) >> (n))))
#define ADD32(x,y) (((u32)((x) + (y))))
#define XOR32(x,y) (((u32)((x) ^ (y))))

#define G32(a,b,c,d,i) \
 v[a] = (ADD32(v[a],v[b]) + XOR32(m[sigma[round][2*i]], c32[sigma[round][2*i+1]])); \
 v[d] = ROT32(XOR32(v[d],v[a]),16); \
 v[c] = ADD32(v[c],v[d]); \
 v[b] = ROT32(XOR32(v[b],v[c]),12); \
 v[a] = (ADD32(v[a],v[b]) + XOR32(m[sigma[round][2*i+1]], c32[sigma[round][2*i]])); \
 v[d] = ROT32(XOR32(v[d],v[a]), 8); \
 v[c] = ADD32(v[c],v[d]);

Listing 3: Reference implementation of the G-function

Operation Seconds for 108 operations

Integer addition 0.18

xor 0.18

rotation 0.20

Table 6: Experimental results for BLAKE basic operations

46 IMVS Fokus Report 2014

measured one full round of the loop at the heart of
BLAKE containing all the G

i
(a,b,c,d) functions:

...
/* do 12 rounds */
for(round=0; round < NB_ROUNDS32; ++round) {
 ledsOn();

 /* column step */
 G32(0, 4, 8, 12, 0);
 G32(1, 5, 9, 13, 1);
 G32(2, 6, 10, 14, 2);
 G32(3, 7, 11, 15, 3);

 /* diagonal step */
 G32(0, 5, 10, 15, 4);
 G32(1, 6, 11, 12, 5);
 G32(2, 7, 8, 13, 6);
 G32(3, 4, 9, 14, 7);

 ledsOff();
}
...

All times are measured with a Tektronix TDS 2014
oscilloscope with a resolution of 2 GHz directly on
the MicroCore board (see Fig. 4). 12 rounds without
hardware optimization take 2876 µs. With hard-
ware optimization they only take 1700 µs, which
results in a speedup of 1.69. The experiments
show that the choice of parameters for G

i
(a,b,c,d)

does not influence very much its performance.
Namely, the average duration of a G

i
(a,b,c,d) func-

tion within the loop is: 1700/12/8 = 17.7 µs.

Discussion
Our measurements confirm that the apparently
trivial function ROT32(x,n) is the performance
bottleneck of BLAKE. It is interesting to note
that this function is used very often in different
hash-functions. Therefore, we decided to imple-
ment it in VHDL and to define it as new Micro-
Forth word (and as part of the MicroCore ISA) as
given in Listing 4.

It is quite remarkable that this new instruction
has a CPI of 1. We have thus demonstrated that
MicroCore is a very elegant platform that permits
a continuous transition between hardware and
software optimization.

Acknowledgement
We thank Dr. Crispin Bayley of York University
for the source code of the global allocation algo-
rithms.

References
[1]	 Jean-Philippe Aumasson, Luca Henzen, Willi Meier,

and Raphael C.-W. Phan, SHA-3 proposal BLAKE, http://

www.131002.net/blake/, 2010. 14, 15.

[2] 	 Chris Bayley and Mark Shannon, Register allocation

for stack machines, Proceedings of the 22nd EuroForth

Conference (2006), 13–20. 10, 12.

[3] 	 Christopher W. Fraser and David R. Hanson, A retargetable

C compiler: design and implementation, Addison-Wesley,

1995. 10.

[4] 	 Philip Koopman Jr., A preliminary exploration of optimized

stack code generation, Proceedings of the rochester Forth

Conference (1992), –. 10, 12, 13.

[5] 	 Markus Knecht, Willi Meier, and Carlo U. Nicola, A space-

and time-efficient implementation of the Merkle tree

traversal algorithm, http://arxiv.org/abs/1409. 4081, 2014.

14.

[6] 	 Carlo U. Nicola, Markus Knecht, Willi Meier, and Klaus

Schleisiek, Microcore: An optimized architecture for

cryptological functions, Tech. report for the Hasler

Foundation, FHNW, October 2014. 11, 12, 14.

[7]	 Klaus Schleisiek, MicroCore 1.66 open, scalable, dual

stack, Harvard processor for embedded control, June 2011.

2.

[8] 	 Mark Shannon, A c compiler for stack machines, Master’s

thesis, University of York, Department of Computer

Science, 2006. 10, 11, 13.

Literal: Bit 7=1 Opcode: Bit 7=0

Forth Stack Description

Type Stack Instr. LIT Before After Notes Number of Cycles (CPI)

BRA: Branch Functions (32 possibilities: 32 used)
...
BRA BOTH ROT32 * n -- ROT32 1
...

Listing 4: Function ROT32 defined as new Micro-Forth word

