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MicroCore  is a dual stack, Harvard architecture 
with three memory areas that can be accessed in 
parallel: data stack (RAM), data memory and re-
turn stack (RAM), and program memory (ROM). 
All instructions without exception are 8 bit wide, 
and they are stored in the program memory ROM. 
Due to the way literal values can be concatenat-
ed from sequences of literal instructions, all data 
paths and memories are scalable to any word 
width as long as the needed address space can 
be represented. Figure 1 shows the MicroCore’s 
structure [7].

One special feature of MicroCore is the pos-
sibility to define more complex Forth words by 
creating new CPU instructions that later can be 
implemented via VHDL in FPGA hardware. The 
synchronous simple design of MicroCore is tai-
lored toward an easy and cheap implementation 
in FPGA. Version 1.71 of MicroCore (the current 
specification) introduces a new and better subset 
of Forth as a machine language especially tailored 
for cryptological calculations. A simple VHDL in-
terpreter allows the cross compiler to load “CON-
STANTS.VHD”, which defines hardware features 
and opcode mnemonics. MicroCore/MicroForth 
thus evolves to a co-design environment. Every 
change in the hardware is unambiguously brought 
forward to the cross compiler. It is guaranteed by 
design that names of hardware characteristics 
are spelled the same in VHDL and in Forth, and 
that they have identical values. 

The control part of MicroCore (see Fig. 2) is 
represented by a decentralized Moore-FSM (Finite 
State Machine) whose next state is determined by 
the decoder. Decentralized means that semi-au-
tonomous parts of the data path (i.e. the local- and 
data-stack) are directly fed by the decoder. Why 
decentralized? For two reasons: firstly, the logic 
of the FSM is simpler, and secondly, the VHDL de-

1	 This work was partially funded by the Hasler Foundation 
Grant no. 12002 “An optimized CPU architecture for cryptologi-
cal functions”.

scription maps more gracefully into the hardware 
components.

The data-path (Fig. 3) regulates the flow of 
operands to or from the two stacks. We have not 
littered the picture with all the necessary mul-
tiplexers in order to better illustrate the under-
lying structure. TOR, PC, DSP and RSP (Table 1 
lists the most important abbreviations) each have 
a primitive n-bit-adder, because of the increment/
decrement and push/pop instructions associated 
with them. Please, notice that manipulations of 
DSP, RSP, PC and INST occur simultaneously and 
can be done within a single clock cycle. All regis-
ters, stacks, and internal busses are n-bit wide. 
Since a MicroCore’s instruction is 8 bit long we 
can store k = n/8 instructions per clock cycle in 
INST, transforming in fact the register INST into 
a small cache.

The data-path is made up of the data-stack, 
the ALU and of the data memory and return 
stack. Registers TOS and NOS feed the ALU. TOR 
allows not only for a decrement-and-branch in-
struction that can be nested, but also for complex 
math instructions like multiply, divide or vector 
multiply. Adding the TASK register will support 
a multi-tasking OS with a base-index address-
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Figure 1: Overview of MicroCore
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ing mode into the task control block. Indexed ad-
dressing into the return stack gives single cycle 
access to local variables. The data stack is real-
ized by a single port RAM used as stack under the 
control of the DSP, and the topmost stack item is 
held in the TOS register. Typically, the size of the 
data-stack memory needed will be small enough 
to fit inside the FPGA.

IO is data memory mapped and the most sig-
nificant address bit selects the external world 
when set. In addition, program memory may be 
mapped into the lower part of the IO address 
space for von Neumann style read and write ac-
cess in two cycles during the development phase. 
If the most significant address bit is not set, da-
ta-memory and return stack RAM is selected. The 
return-stack grows towards lower addresses and 
typically occupies the upper end of data memory 
under the control of Return-Stack-Pointer RSP. 
Both data and program memory may use inter-
nal FPGA block-RAM as “caches” and therefore, 
MicroCore can run as a “single chip controller” 
inside an FPGA without any external memory 

needs. Several data memory access instructions 
are available:
•	 Absolute addressing with the address in the 

TOS register and a three-bit-signed pre-incre-
ment/decrement in the instruction (ld, st);

•	 Indexed addressing relative to the RSP for lo-
cal variable access (lld, lst);

•	 Indexed addressing relative to the TASK regis-
ter (tld, tst).

After each memory access, the absolute memory 
address that had been accessed will remain in 
TOS. Data transfer takes place between the second 
data-stack element NOS and memory/IO.

The Sequencer generates the program-memory 
address for the next instruction, which can have a 
number of sources:
•	 the PC for a sequential instruction;
•	 the ALU for a relative branch or call;
•	 the TOS register for an absolute branch or call;
•	 the TOR register for a return instruction;
•	 the INSTruction register for an immediate call 

(soft instruction);
•	 the fixed Interrupt Service Routine address 

(ISR) as part of an interrupt acknowledge cycle;
•	 the fixed Exception Service Routine address 

(ESR) during an exception cycle;
•	 the fixed Overflow Service Routine address 

(OSR) for a conditional service routine on over-
flow.

In the code, uBus has been defined as a record 
of signals that are needed in several entities: the 
data memory and I/O signals, a selection address 
for the internal registers, an array of all register 
outputs so as to simplify adding application spe-
cific registers. For better and easier code main-
tenance, instruction decoding and status register 
bit processing have been centralized since version 
1.50  in a single file “uCore.vhd”.

In Figure 4 we show the MicroCore develop-
ment board we used throughout this work.

Figure 2: The control unit. n, m, k: number of control lines de-
pendent in general from the width in bits of the data bus and the 
CPI (Clock Per Instruction).

Figure 3: The data path. (1) Because of ++!, ...: 3 bit increment 
value will be added to TOS; (2) push and pop multiplexer lines; 
(3) direct way to save next instruction’s address during call, int, 
...; ALU top input: RSP, NOS, TASK, PC (not all connections are 
shown in this simplified representation).

STATUS 

Status register with eight 1-bit flags: C = Carry, 
OVFL = Overflow, IE = Interrupt Enable,  
IIS = Interrupt In Service, LIT = Literal,  
N = Sign flag, ZF/DIV = Zero Flag,  
TIMES = Counter for TIMES instruction.

INST Instruction register

TOS, NOS, 
DSP 

Top Of Stack register, Next Of Stack register, 
Data Stack Pointer. All work together with the 
data-stack (DS).

TOR, RSP 
Top Of Return stack register, Return Stack 
Pointer. This set of registers works with the 
return-stack (RS).

PC Program Counter register

TASK
Register whose content points to the Task 
Control Block (TAB).

Table 1: Glossary of the abbreviations we use to describe the 
data path 
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MicroCore Instruction Set Architecture (ISA)
All MicroCore instructions are 8 bit wide. If the 
7th bit is set, the instruction is interpreted as a 
7 bit literal (LIT). LIT can be joined to form ar-
bitrary long integers, which are stored in the op-
erand stack. Two LITs build a LITERAL (a 16-bit 
number in two’s complement format). It is a com-
piler’s task to preserve the correct sign when join-
ing many LIT together. The data size is thus inde-
pendent from that of the instruction. As shown in 
Figure 5 all instructions are partitioned in fields, 
whose width in bit remains always constant. The 
instruction set architecture is based upon the 
Forth language.

The MicroCore’s ISA implements a rich sub-
set of the Forth language. Why, Forth? Forth has 
evolved in the last thirty years through natural 
selection in the embedded systems niche, a simple 
but powerful group of instructions that are well 
understood and whose side effects are empirically 
well known. We shall show in Tables 2-4 how to 
encode the three opcode’s format fields.

With the encodings in Tables 2, 3, and 4 we 
can now synthesize meaningful Forth words, as 
Table 5 shows. The symbol - in the column LIT 
means that the previous instruction was an op-
code; whereas when the symbol changes to +, that 
it was a LIT. In this case we get a new LIT on TOS. 
A * means, as always, don’t care.

The regular structure of the three fields (Type, 
Stack, Group) and the constant bit format of all 
instructions simplify enormously the complexity 
of the decoder. However, we hasten to add that the 
encoding of the Forth words is not entirely satis-
factory: for example, we had to use the stack field 
NONE to push or pop data into the local stack. 
This represents not only a breach in the orthogo-

nality of the ISA, but more seriously, a supplemen-
tary hardware layer in the decoder.

For the crypto version of MicroCore we intro-
duced some new instructions:

ROT32: Instead of times we define rot32:  
ROT32 ( 32b n - 32b’ )

Label ( <name> - ), C: Compiles <name> into the 
dictionary as a constant, which holds the current 
program memory address. If <name> is the des-
tination of a preceding GOTO, ?GOTO, or CALL, 
pending forward references will be resolved.

GOTO ( <name> - ), C: Compiles an uncondition-
al branch to <name>. <name> may be a label or co-
lon definition. GOTO supports forward referenc-
ing, i.e. the name of the label or colon definition 
that follows may be defined later on.

?GOTO ( <name> - ), C ( zero: n - ) ( sign: n - ) ( 
carry: - ) ( ovfl: - ): Compiles a conditional branch 
to <name>. <name> may be a label or colon defini-
tion. ?GOTO supports forward referencing, i.e. the 
name of the label or colon definition that follows 
may be defined later on.
•	 ?GOTO compiles 0<>branch
•	 0= ?GOTO compiles 0=branch

Figure 4: The MicroCore development board. The large chip 
is the Lattice LFXP2-17E-5Q208C FPGA into which we imple-
mented the different versions of MicroCore. Size: 94 x 70 mm.
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Figure 5: The format of an instruction

Code Name Action

00 BRA Branches, calls and returns

01 ALU Binary and unary operations

10 MEM Data memory and register access

11 USR
Free for application specific extensions. 
As to version 1.71, 26 user defined 
extensions are possible. 

Table 2: Type field encoding

Code Name Action

00 NONE Dependent on type field encoding                

01 PUSH TOS à NOS à Stack 

10 POP Stack à NOS à TOS

11 BOTH Dependent on type field encoding 

Table 3: Stack field encoding

Code Binary 
Operation

Unary 
Operation Condition Register

000 add not never status

001 sub sl  zero  tor

010 adc asr sign  rstack

011 sbc lsr carry local 

100 and ror pause rsp

101 or  rol int dsp

110 xor zequ dbr   task

111 nos cc  always flags

Table 4: Group field encoding. The group field determines op-
erations, conditions, and registers in dependence on type field 
encoding. The different type fields behave as follows: ALU 
specifies binary and unary operations; BRA specifies the condi-
tions under which a jump is executed; MEM specifies a register 
name.
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•	 0< ?GOTO compiles s-branch
•	 0< 0= ?GOTO compiles ns-branch
•	 carry? ?GOTO compiles carry? IF ELSE GOTO 

THEN
•	 carry? 0= ?GOTO compiles nc-branch
•	 ovfl? ?GOTO compiles ovfl? IF ELSE GOTO 

THEN
•	 ovfl? 0= ?GOTO compiles no-branch

CALL( <name> - ), C: Compiles an unconditional 
call to <name>. <name> may be a label or colon 
definition. CALL supports forward referencing, 
i.e. the name of the label or colon definition that 
follows may be defined later on.

A synchronized RESET signal resets all regis-
ters to zero with the exception of the INST regis-
ter. Instead, INST loads the code for a NOP [BRA 
NONE NEVER] and therefore, the instruction 
whose address is in PC (which has been reset to 
zero!) will be fetched during the first cycle (which 
is the NOP instruction).

Exceptions
MicroCore knows only one type of exception; hard-
ware interrupts. They are synchronized with the 
internal clock and are answered at the end of the 
actual clock cycle, if the IE bit in STATUS register 
is set. During the first clock cycle after granting 
the interrupt request, MicroCore:
1.	 stores the already correct next instruction’s 

address into PC without any increment, and
2.	 loads the hard-wired instruction BRA BOTH 

INT into IR. This call instruction selects the 
hard-wired address of the interrupt handler.

During the second clock cycle, after granting the 
interrupt request, MicroCore:
1.	 executes the instruction BRA BOTH INT. That 

means two things: transfer of the content of 
the STATUS register on the Stack and of the 
content of the PC on the L-Stack; and

2.	 loads the first instruction of the interrupt han-
dler, since its address was already prepared 
during the first cycle.

In summary, only the first INT-cycle must be per-
formed by special hardware. The second cycle 

(INT-instruction) is executed by an instruction 
which is forced into the INST register during the 
first interrupt acknowledge cycle. During the 
STATUS register’s transfer on the stack, the IIS bit 
is automatically set. New interrupt requests are 
from now on granted, only if we explicitly set IE 
and reset IIS.

Whenever an interrupt source is asserted, 
whose corresponding interrupt-enable bit is set in 
the IE-register, its associated bit in the FLAGS-reg-
ister will be set and an interrupt condition exists. 
An interrupt acknowledge cycle will be executed 
when the processor is not currently executing an 
interrupt (IIS-bit not set) and interrupts are glob-
ally enabled (IE-bit of the STATUS-register set). 
Please, note that neither the call to the ISR-ad-
dress nor reading the FLAGS-register will clear 
the FLAGS-register. It is the responsibility of each 
single interrupt server to de-assert its interrupt 
signal as part of its interrupt service routine.

Software Development
An interactive software development environment 
for uCore is rather straightforward and it has 
been realized under Linux and Windows on top 
of gforth under GNU GPL conditions. A “debugga-
ble uCore” has an additional umbilical interface 
that can be controlled by a two-wire UART (RxD, 
TxD) interface on the host computer. The program 
memory, which must be realized as a RAM, can 
be loaded through this interface. After loading the 
application, a small debug monitor takes control 
and is exchanging messages with the host.

The following tasks can be done under control 
of a host computer:
•	 loading a program into uCore’s program mem-

ory;
•	 resetting uCore;
•	 single-step debugging uCore with breakpoints;
•	 observing variables, buffer areas, semaphores, 

and the task list.
It loads on top of gforth (Windows and Linux), an 
open source 32 bit implementation of Forth. It can 
produce a binary image and a symbol table file 

Forth LIT Implementation Comments

NOP *  BRA NONE NEVER  No Operation; 0 à LIT

>R *  MEM NONE RSTACK Stack à NOS à TOS à R-Stack

R>  *  MEM BOTH RSTACK R-Stack à TOS à NOS à Stack

OVER *  ALU PUSH NOS    

+      *  ALU POP ADD     Stack à NOS<+>TOS à TOS

-      *  ALU POP SUB     Stack à NOS<->TOS à TOS

AND *  ALU POP AND     Stack à NOS<AND>TOS à TOS

BRANCH -/+ BRA POP ALWAYS  Absolute 3, relative 2 clock cycles

CALL -/+ BRA BOTH ALWAYS Absolute 3, relative 2 clock cycles

EXIT *  BRA NONE ALWAYS 

L@ *  MEM BOTH LOCAL  LS[RSP + relAddr] à TOS

Table 5: Forth words encoding
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for the debugger, a VHDL file for simulation, and 
a MEM file for FPGA blockRAM configuration. 
Because the Forth systems are 32-bit systems, 
the cross-compiler only supports numbers of up 
to 32-bits signed magnitude. For larger data path 
widths, the cross compiler has to be extended ac-
cordingly if larger numbers need to be compiled.

It is a short but rather complex piece of code. 
Several peep hole optimizations have been imple-
mented and the cross-compiler is of production 
quality.

lcc for MicroCore
We adapted the excellent ANSI-scc2 [8] for gener-
ating MicroCore code. The scc is based on the lcc3. 
We highly recommend our few readers to get their 
hands on a copy of Hanson and Fraser’s book [3] 
that describes in greater details the workings of 
lcc. We will here describe the interface between 
scc and Microcore in some detail, and only briefly 
skim (as need arises!) over the inner workings of 
the compiler.

Stack-based CPUs do not permit to address in a 
simple manner the single slots of the stack where 
the parameters for a procedure call are temporari-
ly stored. All allocation algorithms that work well 
with register-based CPUs are useless for stack-
based CPUs, since registers are individual random 
addressable slots of memory. The problem arises 
as how to allocate efficiently stack memory’s slots 
for inter- and intra-procedure calls. Koopman [4] 
shows how to optimize the former, and Shannon 
[8] how to optimize the latter. Both algorithms are 
implemented in scc. For a good overview of the 
problem of global stack allocation, see [2].

The lcc consists of a front end and a back end. 
The former produces a meta representation of a 
C-program and the latter describes the ISA. The 
meta representation of the C-program is unfortu-
nately not totally independent from the back end. 
A special structure (the interface) is responsible 
for the exchange of information between the two. 
We need to specify for example the data’s align-
ment and type, the byte order (little or big endi-
an), and for a typical lcc, the set of registers. In 
our case we must find a way to accommodate the 
stack structure of MicroCore within this register 
structure.

We will now discuss the changes we made in 
scc, to adjust it to the ISA of MicroCore.

The Meta representation
The C-Code is translated into a sequence of Direct-
ed Acyclic Graphs (DAGs) in such a way that each 
C-function is represented by a forest of DAGs. 
The DAG’s nodes represent the primitive opera-
tions. Figure 6 shows the DAG-tree for the simple 
C-statement y = x[2] + 4. The processing of this 

2	 scc = stack C compiler compiler
3	 lcc = lean C compiler

DAG-tree necessitates following rules (for more 
details, see [6]):

stmt:   ASGNI4(stk, lAddr)    "#\n"      2
stk:    INDIRI4(lAddr)        "#\n"      2
stk:    CNSTI4                "%a\n"     1
stk:    LSHI4(stk, stk)       "shift\n"  1+
                           (DATA_WIDTH+1)/2

DAG’s nodes are assembled with three criteria: (1) 
type of operation, (2) data type and (3) size of data 
type. The following example illustrates the prin-
ciple:

ADD + I + 4  ->  ADDI4

The size is always given in number of bytes. In our 
example the size is 4 bytes. Each node may have a 
variable number (between 0 and 2) of kids. Kids 
are nodes or terminal leaves. The interested read-
er will find in [6] the complete table with all types 
of nodes lcc supports.

We have defined following specific non-termi-
nals for MicroCore:
•	 const: a constant;
•	 zero: constant 0;
•	 const1: constant 1;
•	 lAddr: the address of a local variable;
•	 addr: the address of a global variable, of a 

branch or of a dereferenced pointer (that means 
that all pointers contain absolute addresses.);

•	 jAddr: the address of a function;
•	 stk: represents a stack slot.

The full set of MicroCore’s specific rules are 
shown in [6]. Here we illustrate them with a few 
examples. From the fact that all MicroCore’s 
pointers may contain addresses or data, we derive 
the following rules:

addr:   INDIRP4(sread)    “\n”         0
addr:   INDIRP4(lAddr)    “#\n”        2
addr:   INDIRP4(addr)     “@\n”        1

Figure 6: A typical DAG tree for the C statement: y = x[2] + 4. 
Picture adapted from [8].
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Where:
lAddr: ADDRLP4 "%a"         1
/* No \n so must be printed by assig/indir */
addr:  CNSTP4 "#\n"         1
sread: COPYP "dup\n"        range(a, 1, 1)+1
sread: COPYP "over\n"       range(a, 2, 2)+1
sread: COPYP "2over\nnip\n" range(a, 3, 3)+2
sread: COPYP "any\n"        range(a, 0, 0)+1

For example, addr: INDIRP4(addr) “@\n” fetch-
es data from a constant address of variable size. 
When scc sees the token ‘\#’ in a rule, then it 
stops the evaluation of all the sub-trees which 
grow from that node, and it jumps to the func-
tion emit2() that calculates the exact size of the 
address (see [6]). The fourth column contains the 
cost (correct or guessed clock cycles per instruc-
tion) of the DAG-node. The compiler tries to con-
struct a DAG-tree with minimal cost.

Optimizations
As we already observed, a stack-based CPU does 
not have single named registers that we can ac-
cess in a random manner. On the contrary, we can 
access the slots of a stack only through stack op-
erators like swap, over, etc. This fact makes all 
register allocation algorithms useless. We will 

not discuss here the equivalent algorithms for 
stack allocation, as they are very well explained 
in [4] and [2]. We give below a non-trivial example, 
which shows the working of these algorithms by 
generating MicroCore Forth code.

We examine the program mutual recursion to 
show how the intra- and inter-procedure optimi-
zation from [4] and [8] works.

int mRecFun(int cU, int cD){
    if(cD == 0){
        return cU;
    } else if(cD%2 == 0){
        return mRecFun2(++cU,--cD);
    } else {
        return mRecFun(++cU,--cD);
    }
}
int mRecFun2(int cU, int cD){
    if(cD == 0){
        return cU;
    } else if(cD%2 == 1){
        return mRecFun(++cU,--cD);
    } else {
        return mRecFun2(++cU,--cD);
    }
}

First we give in Listing 1 the MicroCore code 
without the local/global stack optimizations. The 

( MicroCore(TM) uForth ) decimal : _mRecFun
    0 >r rsp@ 3 - rsp!  
      ( allocate 3 local variables )
    6 l@  ?GOTO LABEL_2 
        ( jump if not equal )
    5 l@ ( return int )
    GOTO LABEL_1
Label LABEL_2
    6 l@ 2 mod  ?GOTO LABEL_4  
        ( jump if not equal )
    6 l@ 1- 3 l!
    3 l@ 6 l!
    3 l@ >r ( push int parameter 1 )
    6 l@ 1+ 3 l!
    3 l@ 6 l!
    3 l@ >r ( push int parameter 2 )
    CALL _mRecFun2  ( call to function )
    rdrop rdrop ( deallocate 2 parameters )
    ( tos ) 1 l!
    1 l@ ( return int )
    GOTO LABEL_1
Label LABEL_4
    6 l@ 1- 3 l!
    3 l@ 6 l!
    3 l@ >r ( push int parameter 1 )
    6 l@ 1+ 3 l!
    3 l@ 6 l!
    3 l@ >r ( push int parameter 2 )
    RECURSE ( recursive call to function )
    rdrop rdrop ( deallocate 2 parameters )
    ( tos ) 1 l!
    1 l@ ( return int )
Label LABEL_1
    rdrop rdrop rdrop rdrop 
        ( deallocate 3 local Variables )
;

Listing 1: MicroCore code without stack optimizations

decimal : _mRecFun ( 2 parameters )
    swap swap dup 0 -
    ?GOTO lbl_2 ( jump if not equal )
    drop ( return int )
    GOTO lbl_1
  Label lbl_2
    dup 2 mod 0 -
    ?GOTO lbl_4 ( jump if not equal )
    swap 1+ swap swap swap 1-
    swap swap
    CALL _mRecFun2 ( call to function )
    ( return int )
    GOTO lbl_1
  Label lbl_4
    swap 1+ swap swap swap 1-
    swap swap
    RECURSE ( recursive call to function )
    ( return int )
  Label lbl_1
;
: _mRecFun2 ( 2 parameters )
    swap swap dup 0 -
    ?GOTO lbl_7 ( jump if not equal )
    drop ( return int )
    GOTO lbl_6
  Label lbl_7
    dup 2 mod 1 -
    ?GOTO lbl_9 ( jump if not equal )
    swap 1+ swap swap swap 1-
    swap swap
    _mRecFun ( return int )
    GOTO lbl_6
  Label lbl_9
    swap 1+ swap swap swap 1-
    swap swap
    RECURSE ( recursive call to function )
    ( return int )
  Label lbl_6
;

Listing 2: MicroCore code with stack optimizations
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multiple use of l@ means that the local variables 
are temporarily stored outside the stack, thus in-
creasing the time to access them. The optimized 
version of the program is given in Listing 2.
All the temporarily defined local variables remain 
on the stack and are accessed through normal 
stack operations like -rot, dup or drop.

The peephole optimization is carried out by the 
Forth cross-compiler whose responsibility is the 
transfer of the MicroCore Forth code to the target.

The cryptological function in Hardware
We used the BLAKE hash algorithm [1] in order 
to locate those cryptological functions that con-
sume the most CPU cycles. The whys of this choice 
are explained elsewhere [5][6]. BLAKE security 
was evaluated by NIST in the SHA-3 process as 
having a “very large security margin”, and the 
cryptanalysis published on BLAKE was noted as 
having “a great deal of depth”. The BLAKE hash 
function comes in a family of four hash func-
tions: BLAKE-224, BLAKE-256, BLAKE-384 and 
BLAKE-512. BLAKE-256 is based on 32-bit words, 
whereas BLAKE-512 on 64-bit words, from which 
the other members of hash functions are derived.

BLAKE uses only three basic operations: inte-
ger addition, xor ‘⊕’, and rotation ‘<<<’ (i.e., a cir-
cular shift given by a prescribed shift amount).

The G-function is the core of BLAKE and the 
source of its security against differential attacks 
[1]. Each G-function of BLAKE, G

i
(a,b,c,d) at round 

r operates on four selected words a,b,c,d of a 4 x 4 
square of state words, and sets:

a := a+b+(ms(r,2i) ⊕ cs(r,2i+1))
d := (d ⊕ a) <<< 16
c := c+d
b := (b ⊕ c) <<< 12
a := a+b+(ms(r,2i+1) ⊕ cs(r,2i))
d := (d ⊕ a) <<< 8
c := c+d
b := (b ⊕ c) <<< 7

Here, s denotes a specified permutation of num-
bers between 0 and 15, and the m

k
 denotes mes-

sage words. The G-function performs six integer 
additions, six xors, and four word rotations. Apart 

from the permutation s, the time consumption of 
each of the operations involved in the computation 
of a G-function has to be inspected. The rotation 
amounts in the second and fourth assignments 
differ, and are not always a power of two.

Performance with gcc
For performance measurements, a computer with 
the following technical characteristics has been 
used: CPU Intel(R) Core i7 M 640 at 2.80 GHz; 2 
GiB DIMM-Memory at 1333 MHz, 4 MiB external 
Cache, 320 GiB of permanent storage.

As the G-function is composed of the opera-
tions, (unsigned) integer addition, xor and rota-
tion, the time consumption of these operations is 
measured and compared individually. To obtain 
reproducible and measurable quantities, each 
measurement has been executed 108 times (see Ta-
ble 6). We give in Listing 3 the reference imple-
mentation of the G-function.

The measurements have been done using the 
C-function clock(). Timings for differing rotation 
amounts in the rotation operation don’t vary sig-
nificantly. Note however, that rotation amounts 
that are a multiple of 8 can be implemented by 
just reordering bytes, which is often faster than 
shifting the words. For measurements, rotation 
has been implemented as in the official BLAKE 
document, as an ANSI C-preprocessor macro. As a 
result, rotation is the most time consuming oper-
ation (see Table 6). When looking at assignments, 
the first and fifth assignments are more time con-
suming than the others, as they involve more ba-
sic operations plus a permutation of 16 words.

Performance with scc
We only show an example of the performance 
measurements before and after the hardware im-
plementation of the ROT32(x,n) function. The full 
set of measurements is available upon request. We 

#define ROT32(x,n) ((((x) << (32-(n))) | ((x) >> (n))))
#define ADD32(x,y) (((u32)((x) + (y)))) 
#define XOR32(x,y) (((u32)((x) ^ (y))))

#define G32(a,b,c,d,i) \
  v[a] = (ADD32(v[a],v[b]) + XOR32(m[sigma[round][2*i]], c32[sigma[round][2*i+1]])); \
  v[d] = ROT32(XOR32(v[d],v[a]),16); \
  v[c] = ADD32(v[c],v[d]); \
  v[b] = ROT32(XOR32(v[b],v[c]),12); \
  v[a] = (ADD32(v[a],v[b]) + XOR32(m[sigma[round][2*i+1]], c32[sigma[round][2*i]])); \
  v[d] = ROT32(XOR32(v[d],v[a]), 8); \
  v[c] = ADD32(v[c],v[d]);

Listing 3: Reference implementation of the G-function

Operation Seconds for 108 operations 

Integer addition 0.18 

xor 0.18 

rotation 0.20 

Table 6: Experimental results for BLAKE basic operations
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measured one full round of the loop at the heart of 
BLAKE containing all the G

i
(a,b,c,d) functions:

...
/*  do 12 rounds */
for(round=0; round < NB_ROUNDS32; ++round) {
    _ledsOn_();

    /* column step */
    G32(0, 4,  8, 12, 0);
    G32(1, 5,  9, 13, 1);
    G32(2, 6, 10, 14, 2);
    G32(3, 7, 11, 15, 3);

    /* diagonal step */
    G32(0, 5, 10, 15, 4);
    G32(1, 6, 11, 12, 5);
    G32(2, 7,  8, 13, 6);
    G32(3, 4,  9, 14, 7);

    _ledsOff_();
} 
...

All times are measured with a Tektronix TDS 2014 
oscilloscope with a resolution of 2 GHz directly on 
the MicroCore board (see Fig. 4). 12 rounds without 
hardware optimization take 2876 µs. With hard-
ware optimization they only take 1700 µs, which 
results in a speedup of 1.69. The experiments 
show that the choice of parameters for G

i
(a,b,c,d) 

does not influence very much its performance. 
Namely, the average duration of a G

i
(a,b,c,d) func-

tion within the loop is: 1700/12/8 = 17.7 µs.

Discussion
Our measurements confirm that the apparently 
trivial function ROT32(x,n) is the performance 
bottleneck of BLAKE. It is interesting to note 
that this function is used very often in different 
hash-functions. Therefore, we decided to imple-
ment it in VHDL and to define it as new Micro-
Forth word (and as part of the MicroCore ISA) as 
given in Listing 4.

It is quite remarkable that this new instruction 
has a CPI of 1. We have thus demonstrated that 
MicroCore is a very elegant platform that permits 
a continuous transition between hardware and 
software optimization.
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Literal:        Bit 7=1           Opcode:         Bit 7=0

Forth Stack Description

Type     Stack     Instr.      LIT     Before     After     Notes      Number of Cycles (CPI)

BRA: Branch Functions (32 possibilities: 32 used)
...
BRA      BOTH      ROT32       *       n          --        ROT32      1
...

Listing 4: Function ROT32 defined as new Micro-Forth word


