
[SSC22-XII-04]

First demonstration of a post-quantum key-exchange with a nanosatellite

Simon M. Burkhardt, Willi Meier, Christoph F. Wildfeuer
Institute for Sensors and Electronics, University of Applied Sciences and Arts Northwestern Switzerland

Klosterzelgstr. 2, 5210 Windisch; +41-562028792
simon.burkhardt@fhnw.ch

Ayesha Reezwana, Tanvirul Islam, Alexander Ling
Centre for Quantum Technologies, National University of Singapore

3 Science Drive 2, 120435; +65-86545795
cqtayes@nus.edu.sg

ABSTRACT

We demonstrate a post-quantum key-exchange with the nanosatellite SpooQy-1 in low Earth orbit using
Kyber-512, a lattice-based key-encapsulation mechanism and a round three finalist in the NIST PQC stan-
dardization process. Our firmware solution runs on an on-board computer that is based on the Atmel AVR32
RISC microcontroller, a widely used platform for nanosatellites. We uploaded the new firmware with a 436.2
MHz UHF link using the CubeSat Space Protocol (CSP) and performed the steps of the key exchange in
several passes over Switzerland. The shared secret key generated in this experiment could potentially be
used to encrypt RF links with AES-256. This implementation demonstrates the feasibility of a quantum-safe
authenticated key-exchange and encryption system on SWaP constrained nanosatellites.

Introduction

Security techniques for commercial satellites are
poorly developed despite the rapid increase in the
number of satellite missions. New constellations will
increase the number of satellites dramatically over
the next decade. It can be expected that with an
increase in the number of operational satellites, the
number of cyber-attacks on spacecraft communica-
tion will also increase.1

Figure 1: Satellite infrastructure used in this
experiment

In SatCom systems, the symmetric key encryp-
tion algorithms - where the same key is used for
both encoding and decoding messages - are fre-
quently used. This approach to encryption in satel-
lite communication requires that every party estab-

lishes a unique secret key with every other party
with whom they would like to communicate. Fur-
thermore, adding to this problem, each party must
obtain all its secret keys in advance because pos-
session of an appropriate key is a necessary prereq-
uisite to establish a secure communication channel
with another party. The number of shared key pairs
that every party needs to store increases according to
n(n− 1)/2, where n may be the number of satellites
in a constellation. Considering 100 satellites, this to-
tals 4950 key pairs. Key-management can therefore
become an important challenge for larger satellite
fleets. To solve these issues, an asymmetric key en-
cryption algorithm could be adopted where the key
used to encrypt the message is different from the
key used to decrypt the message. Such an approach
requires each of the communication parties to main-
tain two keys only - one that is kept private and a
second one that is made publicly available.

Using public-key exchange protocols for space
applications has recently been proposed.2 In most
public-key systems the public keys are generated
with RSA and Elliptic Curve Cryptography (ECC).
However, it is now anticipated that Quantum Com-
puters (QC) will be able to break both RSA and
ECC when the technology to manufacture enough
quantum nodes becomes available.

In order to solve this problem, the National In-
stitute of Standards and Technology (NIST) has

Burkhardt 1 36th Annual Small Satellite Conference

initiated a process to solicit, evaluate, and stan-
dardize one or more quantum-resistant public-
key cryptographic algorithms. The goal of
Post-Quantum Cryptography (PQC), (also called
quantum-resistant cryptography) is to develop cryp-
tographic systems that are secure against both quan-
tum and classical computers and can interoper-
ate with existing communication protocols and net-
works. Kyber is one of the finalists in the NIST
PQC project and it was chosen because it is a secure
and efficient Key Encapsulation Mechanism (KEM),
whose security is based on the hardness to solve the
Learning-with-Errors (LWE) problem over module
lattices.3,4

Our SpooQy-1 satellite consisted of two
GomSpace components which handle communica-
tion, commands and data. The AX100 COMmodule
had a SHA-1 Hash-based Message Authentication
scheme (HMAC) but no encryption for the data.
SHA-1 is well known for being insecure.5

The second module, the A3200 On-Board Com-
puter (OBC) was used for flight controls and mis-
sion software. The OBC ran the open source libcsp6

implementation of the CSP which offers optional
encryption using a 128-bit symmetric XTEA algo-
rithm. With the goal of moving towards a quantum
secure satellite infrastructure (including CubeSats),
it is crucial to embed PQC into current hardware
and software projects. Many of the CubeSats run
on Size, Weight and Power (SWaP) constrained on-
board computers. We present a demonstration of a
successful key exchange with this experiment using
the older AVR32 microcontroller architecture as well
as some performance measurements on the more re-
cent ARM Cortex-M4 architecture. Figure 1 shows
our setup of the ground stations and the SpooQy-1
satellite.

SpooQy-1 CubeSat

Development and objectives

The main objective of SpooQySat, the SpooQy-
1 CubeSat, was to demonstrate an in-orbit space-
compatible quantum light source SPEQS (the Small
Photon Entangling Quantum System) to increase
the Technology Readiness Level (TRL) of future
global Quantum Key Distribution (QKD) networks.
QKD is a family of secure communication techniques
used to generate private and shareable random se-
cret keys that can be exchanged between two par-
ties only. Essentially, QKD requires the exchange of
individual photons and therefore very low-loss opti-
cal links need to be established. Optical fibers are

limited to about 100 km before losses become over-
whelming. Free-space optical losses are much lower.
However, the main drawback for free-space QKD is
key exhaustion due to failed key generation because
of bad weather. Here PQC can provide a fallback
solution if keys cannot be exchanged by QKD. Also,
PQC may become the standard for encrypting the
RF wireless satellite data links since it does not re-
quire special hardware and optical communication.
That was the motivation to implement a PQC algo-
rithm on SpooQy-1 after the main objective for the
mission had been accomplished.

Figure 2: Partially integrated engineering
model of SpooQySat, a 3U CubeSat. Re-
moved solar panels reveal structural model
of the SPEQS payload.

Experiments of a basic SPEQS source started
in 2012 with high-altitude balloon tests followed by
a correlated SPEQS source in 2013.7,8 In 2016, a
Space-qualified, correlated SPEQS source was tested
in low Earth orbit on the NUS Galassia CubeSat.9

Burkhardt 2 36th Annual Small Satellite Conference

Figure 3: Singapore UHF ground station on
the roof top at NUS campus.

Figure 4: Switzerland UHF ground station at
the campus of FHNW in Windisch.

SpooQy-1 was then designed and built at the

Centre for Quantum Technologies, National Univer-
sity of Singapore to demonstrate an entangled pho-
ton pair-source in space. SpooQy-1 was deployed
to Low Earth Orbit (LEO) from the international
space station on 17th June 2019 and provided the
first demonstration of entanglement in space on a
nanosatellite.10 In Figure 2 the partially integrated
engineering model is shown. Fully assembled, the
CubeSat mass is 2.6 kg, and its peak system power
consumption is 3.9W.

The Singapore ground station is located on top
of an eighteen storied building at the NUS campus
shown in Figure 3. A secondary UHF ground sta-
tion, shown in Figure 4, is established in Switzer-
land to provide additional data download oppor-
tunities. The ground stations are built using the
GomSpace UHF hardware and have identical se-
tups. Both ground stations are equipped with a
twinned Yagi antenna with a tracking mount. The
rotor is controlled by a Linux based server com-
puter (NanoCom MS100). The ground station radio
(NanoCom GS100) is the ground counterpart (with
a 25 W power amplifier) for the NanoCom AX100
radio on-board SpooQy-1, designed specifically as
an integrated component to request/respond via the
CSP protocol during operation.

AVR32 platform

The SpooQy-1 nanosatellite uses the NanoMind
A3200 on-board computer from GomSpace which
utilizes a Microchip AT32UC3C0512C micro con-
troller running a real time operating system (FreeR-
TOS) along with proprietary mission specific soft-
ware. On-board are 128MB of external flash storage
which can be accessed through the C stdlib file IO
functions. On the flash memory there is a FAT file
system present which can be accessed through an
FTP implementation for CSP. An additional 32MB
of SDRAM can be used to load a binary RAM im-
age file nanomind.elf from the file system and boot
from there. This enables the satellite with the capa-
bility to run new code once it is in orbit.

Firmware framework

GomSpace delivers the NanoMind with a Soft-
ware Development Kit (SDK) and documentation
to build and expand mission firmware for their AVR
platform. The SDK consists of a fully featured
mission control software with the software parts.
The Figure 5 shows a visual representation of the
software components that are involved both in the
ground station and the satellite.

Burkhardt 3 36th Annual Small Satellite Conference

Our goal was to implement the Kyber algo-
rithm alongside this mission control software to
demonstrate that the Kyber source code can run
on the AVR32 platform. The following chapter de-
scribes the challenges, solutions and recommenda-
tions when using PQC algorithms on satellite hard-
and firmware.

Implementing the key exchange

Kyber key encapsulation mechanism

The PQ CRYSTALS Kyber algorithm is a quan-
tum secure Key Encapsulation Mechanism (KEM).
A KEM can be used in combination with a Key
Derivation Function (KDF) to generate a common
symmetric key. In the case of Kyber, SHA-256
is used as the KDF. The reference implementation
from PQ CRYSTALS contains the API source code
for such a KEM inside kex.c as well as a principal
protocol definition in section 5 of.3 The API offers
two types of key exchange: the “Unilaterally Au-
thenticated Key Exchange” (UAKE) and the “Mu-
tually Authenticated Key Exchange” (AKE), which
is the preferred and most secure method. Whereby
the authentication does not authenticate the partic-
ipants but guarantees that each party has derived
the same symmetric key. For user authentication
a separate algorithm like Dilithium11 would be re-
quired. In our experiment we had the advantage of
using pre-shared secrets to authenticate both parties
using HMAC that had already been implemented in
the AX100 COM module. However, since the imple-
mented HMAC is based on SHA-1 it is not quantum-
safe.

AVR32 toolchain

Compilation of the GomSpace firmware is done
using the AVR32 tool chain (version 3.4.2). It con-
tains avr32-gcc (gcc version 4.4.7) for Debian-based
Linux systems. A drawback of this outdated C com-
piler is that it only supports C language up to the
C99 standard. The Kyber implementation is in-
cluded in the liboqs project from the open quantum
safe organization.12 Liboqs is a sandbox to exper-
iment with many different PQC algorithms which
are participating in the NIST standardization pro-
cess. However, this project requires C11 standard
and utilizes functions like aligned alloc which are
unavailable from the avr32-gcc compiler. We there-
fore focused on the standalone Kyber algorithm
rather than including multiple NIST candidate al-
gorithms. In a first step, the original Kyber source
code from the PQ CRYSTALS organization13 was

integrated into the AVR32 auto build system for the
NanoMind. This step includes platform specific ad-
justments to the Kyber source code like the random
number source.

Random number generators

To guarantee quantum safety, the Kyber algo-
rithm requires a Random Number Generator (RNG)
that can produce 256 bits of entropy. The origi-
nal Kyber implementation uses the /dev/urandom

pseudo-random number generator on Linux based
systems. Although being pseudo-random, it is
considered to be safe for cryptographic applica-
tions.14,15

SpooQy-1’s OBC is only running an RTOS and
not a full operating system which would offer such
a secure RNG. This is why the Kyber source code
was modified to replace reading from /dev/urandom

with the pseudo-random function rand() from the
avr32-gcc stdlib. This affects the randombytes()

function used during the asymmetric key pair gener-
ation. Another issue is that on AVR32 a True Ran-
dom Number Generator (TRNG) is missing. For
time reasons we decided not to implement SpooQy-
1’s on-board Quantum Random Number Generator
(QRNG) into this experiment. In a practical ap-
plication the rand()-function is the weakest point
of failure because the private keys from pseudo-
randomly generated key pairs can sometimes be re-
covered as demonstrated in.16 We strongly advise,
using a TRNG or even a QRNG to get the required
256 bits of entropy for Kyber. As a less secure
alternative one can seed the PRNG using a true
random number or a pre-shared secret seed using
srand(seed). In this experiment we used the de-
fault seed. It should also be pointed out that the
ground station is using the secure RNG, as depicted
in Figure 6. If the ground station initiates the key
exchange, the random ingredients for the common
secret are therefore cryptographically secure. This
would not be the case, if the satellite initiates the
key exchange.

Practical key exchange application

The original implementation in test kex.c from
the Kyber source code served as a reference imple-
mentation for our AVR32 application.13 Both the
SDK for the satellite and the ground station allow
the developer to implement callback handlers for
custom features on both ends (in our source code:
kex pub.c and kex kyber.c, respectively17). We
implemented the Kyber API into callback functions
for the satellite’s command parser. Limited by the

Burkhardt 4 36th Annual Small Satellite Conference

available time to develop such an implementation,
we decided to implement only the satellite’s back end
and perform the message exchange manually using
the File Transfer Protocol (FTP). All keys and tem-
porary arrays are not just stored in RAM but also in
hex-format as ASCII characters on the NanoMind’s
and ground station’s file systems. This has another
practical reason: in case of a reboot the keys can
be recovered from the flash memory. During the
key exchange the encapsulated message files are not
exchanged automatically but manually using FTP
upload and download commands. For this purpose,
we implemented a way to read and write these mes-
sage files on both stations. The two code snippets in
Listing 1 and Listing 2 show the principle behind the
code that was executed as part of our key exchange
experiment. The full code is available in our Github
repository.17

0 FILE ∗ fp ;
1 fp = fopen (f i l ename , ”w+”) ;
2 f o r (i n t i =0; i<(i n t) bytes ; i++)
3 f p r i n t f (fp , ”%02x” , in [i]) ;
4 f c l o s e (fp) ;

Listing 1: Source code of how the messages
are written to files inside
writeHexFile(filename,in,bytes).

0 readHexFi le (”/ f l a s h / ake senda . txt ” ,
ake senda , KEX AKE SENDABYTES) ;

1 kex ake sharedB (ake sendb , ka , ake senda ,
ska , pkb) ; // Run by Bob

2 wri teHexFi l e (”/ f l a s h /COMMON. key” , ka ,
KEX SSBYTES) ; // f i n a l key

3 wri teHexFi l e (”/ f l a s h / ake sendb . txt ” ,
ake sendb , KEX AKE SENDBBYTES) ;

Listing 2: Source code of how
kex ake sharedB() is performed with
ake senda.txt as input.

The file “COMMON.key” then contains the HEX
representation of the exchanged key. This key is 32
bytes long, or 64 characters if stored in ASCII HEX
format using printf(%02x).

0 f02473a6ab18617b3e0dbcc565b4b64e23
f12a284a6dbfbf5cd3cde4ac5e2e21

Listing 3: The contents of COMMON.key
after the successful key exchange.

Communication channel

x86-64

CSP

UHF

≤4.8 kbps

AT32UC (AVR32)

32MB
SDRAM

 COM
 module

128MB
Flash

COM
 module

Nanomind a3200

cmd interpreter

cmd scheduler

FTP

Thinkpad

csp-term kyber-512

kyber-512

FreeRTOS 8.0.1

Ubuntu 16.04 7 LTS

fat-fs

Figure 5: Hardware and software components
involved in the setup.

Resource utilization

As shown in Table 1 our application of Kyber-
512 uses approximately 13 kB more flash (text)
and 8 kB more RAM (bss) than the default mission
firmware without Kyber. The additional 8032 bytes
in the RAM are a direct consequence of the several
global arrays required to store the keys and mes-
sages. This is an increase of 40x (flash) respectively
500x (RAM) compared to the insecure XTEA imple-
mentation which uses a 128-bit key. If compiled as
a RAM image to boot from the SDRAM, less RAM
is available for the program which limits the RAM
usage of the mission firmware. This is especially rel-
evant for the large arrays used to hold the keys. In
our case there is only enough RAM to have tem-
porary arrays for one key exchange. The on-board

Burkhardt 5 36th Annual Small Satellite Conference

simulation of a key exchange using two parties would
not fit into the memory.

Table 1: Memory usage (in bytes) on AVR32
compared to the default project without any
cryptographic function, when compiling for a
RAM image.

Algorithm flash RAM

default (none) 467’608 31’024

XTEA +344 +16

SHA1-HMAC +1’856 +16

XTEA & SHA1-HMAC +2’192 +32

Kyber-512 +12’976 +8’032

Kyber-718 +13’016 +11’680

Kyber-1024 +13’248 +15’808

Exchanging keys

Setup

For the demonstration we assume that the
ground station is “Alice” and SpooQy-1 is “Bob”.
SpooQy-1 has the firmware with the Kyber-512 im-
plementation uploaded and booted. The ground sta-
tion has two pieces of software running: the csp-term
and our executable implementation of the Kyber
API. We use the command scheduler on the satel-
lite to schedule commands that are unknown to the
ground station terminal.

Two ground stations had been used. One at the
NUS Campus in Singapore and one at FHNW in
Switzerland. The two ground segments were con-
nected through a quantum-safe version of the Secure
Shell Protocol (SSH), which simplified collaborative
work, since all ground stations could be remote con-
trolled.

Experiment

Figure 6 shows the performed key exchange
where Alice is the initiator. In a first step, one se-
cret/public key pair is generated each for Alice (skA,
pkA) and for Bob (skB, pkA). Next, the public keys
are exchanged between the two stations by down-
loading/uploading the text files. Alice then starts
the key encapsulation mechanism by generating a
third key pair (eskA, epkA) which is used as the basis
for the common secret key. Note that this key pair
is generated using a cryptographically secure RNG.
The output of both the key generation (epkA) and
start of the authentication (c2) is then uploaded to
Bob. Bob then performs several encapsulation and
decapsulation operations, which enables him to use
several outputs (K, K1, tk

′) to derive the final key.

The second output from Bob’s encapsulation is then
downloaded to Alice again, where a final decapsu-
lation generates the same components for the key
derivation as Bob already has. Alice and Bob are
now in possession of the same common key. To verify
this, we downloaded Bob’s key to the ground station
to compare it with Alice’s key. The full command
sequence is shown in the Listing 4.

0 GND > kex− i n i t
1 SAT > kex kyb − i
2 GND > f tp up load . /PKA. key / f l a s h /PKB. key
3 GND > f tp download / f l a s h /PKA. key . /PKB. key
4 GND > kex−pub −A
5 GND > f tp up load . / ake senda . txt
6 SAT > kex kyb −B
7 GND > f tp download / f l a s h /COMMON. key
8 GND > mv ./COMMON. key . /SATELLITE. key
9 GND > f tp download / f l a s h / ake sendb . txt

10 GND > kex−pub −C
11 GND > d i f f . /COMMON. key . /SATELLITE. key

Listing 4: command sequence for the KEX
experiment

Benchmarking SSH with PQC algorithms

Since SpooQy-1 reentered Earth right after we
performed the key exchange, we could not do bench-
marking studies for the RF link. However, we per-
formed tests for a quantum-safe version of the SSH
protocol that we used in the Singapore-Switzerland
internet link. Here we benchmarked the new NIST
round 3 candidates against currently used Elliptic-
Curve Diffie-Hellman (ECDH). In Figure 7 we show
the results for the handshake times in the quantum-
safe version of SSH that show the average over 1000
handshakes as a function of different key-exchange
algorithms. For all algorithms the authentication
was performed with Dilithium 2. It appears that
the lattice-based algorithms perform similarly and
on par with ECDH. However, the code-based algo-
rithm classic McEliece is taking more time since its
public key is substantially larger.

Burkhardt 6 36th Annual Small Satellite Conference

tk'

"Bob" SpooQy-1 (AVR32)"Alice" Ground Station (x86-64)

skA

pkA

kyber.Keygen() kyber.Keygen()

secret auth. key

public auth. key

secure RNG insecure PRNG

skB

pkB

secret auth. key

public auth. key

kyber.Keygen()

pkA

pkB

tkc2kyber.Encaps(pkB)

/dev/urandom rand()

Static keys

epkA ,c2
kyber.Encaps(epkA)

c, c1

kyber.Encaps(pkA)

kyber.Decaps(skB, c2)

c1

epkA

K1

kyber.Decaps(eskA, c)

kyber.Decaps(skA, c1) K1'

K'

key = H (K', K1', tk) key = H (K, K1, tk')

eskA

c K

Figure 6: Mutually authenticated key exchange where the ground station is the initiator.

Figure 7: Total handshake time in seconds as a function of the round-3 NIST key-exchange
algorithms. Median (dark-blue) and 95th percentile (light-blue). The 200 ms round trip time
between Singapore and Switzerland is included. The classical key-exchange (ecdh-p256) is
shown as a baseline. All key-exchange algorithms are authenticated with Dilithium 2 and the
numbers shown are from averaging over 1000 handshake times.

Burkhardt 7 36th Annual Small Satellite Conference

0

50

100

150

200

250

0

2

4

6

8

10

12

14

16

ti
m

e
 [

m
s]

C
P

U
 c

yc
le

s

x
1

0
6

CPU cycles / time used for XTEA and Kyber-512
on ARM Cortex-M4 @64MHz, median values, N=1'000

Kyber-512
256 bit key

XTEA
256 bit key

Figure 8: Performance measurements on an ARM Cortex-M4 microcontroller.

We also conducted benchmarking measurements
to compare Kyber-512 to XTEA. Keep in mind
that XTEA is a symmetric block cipher while Ky-
ber is an asymmetric key encapsulation mechanism.
The comparison between the two algorithms should
therefore only serve as a point of reference for em-
bedded developers. Since XTEA is the only cryp-
tographic function implemented in libcsp it does
make sense to compare its computational effort to
the proposed Kyber-512 algorithm. For the per-
formance measurements we use a hardware that is
comparable to SpooQy-1’s OBC. Here, we used the
STM32F407VG microcontroller based on the ARM
Cortex-M4 RISC architecture. Figure 8 shows the
median values for 1’000 iterations of various crypto-
graphic functions executed on this microcontroller.

We see that Kyber-512 needs substantially more
resources than XTEA. However, as OBCs on Cube-
Sats become more powerful and the trend is to-
wards using higher performing architectures like the
ARM Cortex-A9 (NanoMind Z7000), PQC algo-
rithms should present a feasible alternative to their
classical counterparts.

Conclusion

We were able to demonstrate a quantum secure
key exchange with a nanosatellite in low Earth or-
bit using the Kyber-512 KEM API. Implementing
a PQC algorithm on an embedded micro controller
brings new weaknesses that need to be addressed by
the developer, such as the usage of a cryptographi-
cally secure RNG. There is also a potential risk that
the implementation of the new algorithms do not
support the old MCU architecture currently used
for developing nanosatellites. The integration of Ky-
ber into the libcsp project is planned as a follow-up

project at FHNW. Since SpooQy-1 has also demon-
strated recently a working QRNG,18 we may use
those random numbers in the next satellite mission
SpooQy-2 as a cryptographically secure RNG in-
stead of the PRNGs described previously. For a fu-
ture project one could take on the task of improving
the security features of libcsp by implementing the
Kyber algorithm for example. There would however
be the challenge of providing a secure RNG which
cannot be programmed into the library generically.

Acknowledgement

We thank Raffael Anklin for his help with the
AVR32 microcontroller, and Frank Imhof for bench-
marking the SG-CH connection.

References

[1] Manulis, M., Bridges, C.P., Harrison, R. et al.
Cyber security in New Space. Int. J. Inf. Se-
cur. 20, 287–311 (2021), https://doi.org/10.
1007/s10207-020-00503-w

[2] A. Godhwani, M. Murfield, T. Delaney, Kok-
Song Fong, P. Browne and S. Hryckiewicz, ”The
use of PKI in next generation UHF SATCOM,”
2011 - MILCOM 2011 Military Communications
Conference, 2011, pp. 1733-1738, https://doi.
org/10.1109/MILCOM.2011.6127561.

[3] J. Bos et al., “CRYSTALS - Kyber: A CCA-
Secure Module-Lattice-Based KEM,” 2018 IEEE
European Symposium on Security and Privacy
(EuroS&P), 2018, pp. 353–367, https://doi.

org/10.1109/EuroSP.2018.00032

[4] NIST standardization process for quantum-
resistant public-key cryptographic algorithms,

Burkhardt 8 36th Annual Small Satellite Conference

https://doi.org/10.1007/s10207-020-00503-w
https://doi.org/10.1007/s10207-020-00503-w
https://doi.org/10.1109/MILCOM.2011.6127561
https://doi.org/10.1109/MILCOM.2011.6127561
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032

Online, https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography

[5] M. Stevens, E. Bursztein, P. Karpman, A. Al-
bertini, Y. Markov, “The First Collision for Full
SHA-1,” in: Katz J., Shacham H. (eds) Advances
in Cryptology – CRYPTO 2017. CRYPTO 2017.
Lecture Notes in Computer Science, vol 10401.
Springer, Cham, https://doi.org/10.1007/

978-3-319-63688-7_19

[6] J. De C. Christiansen, J. Ledet-Pedersen, P.
Wullf, Y. Shoji and D. E. Holmstroem, “Cube-
sat Space Protocol - A small network-layer
delivery protocol designed for Cubesats,” On-
line on Github, 2011, https://github.com/

libcsp/libcsp

[7] W. Morong, A. Ling, D. Oi, “Quantum Optics
for Space Platforms,” Optics & Photonics News
23(10), 2012, pp. 42–49 https://doi.org/10.

1364/OPN.23.10.000042

[8] Z. Tang, R. Chandrasekara, Y.Y. Sean, C.
Cheng, C. Wildfeuer, A. Ling “Near-space flight
of a correlated photon system,” Sci. Rep.,
4 (6366), 2014, https://doi.org/10.1038/

srep06366

[9] Z. Tang, et al. “Generation and analysis of corre-
lated pairs of photons onboard a nanosatellite,”
Phys. Rev.Appl, 5 (054022), 2016, https://

doi.org/10.1103/PhysRevApplied.5.054022

[10] A. Villar, A. Lohrmann, X. Bai, T. Vergoossen,
R. Bedington, C. Perumangatt, H. Y. Lim, T. Is-
lam, A. Reezwana, Z. Tang, R. Chandrasekara,
S. Sachidananda, K. Durak, C. F. Wildfeuer, D.
Griffin, D. K. L. Oi, and A. Ling, “Entangle-
ment demonstration on board a nanosatellite,”
Optica 7, 2020, pp. 734–737, https://doi.org/
10.1364/OPTICA.387306

[11] S. Bai, L. Ducas, E. Kiltz, T. Lepoint,
V. Lyubashevsky, P. Schwabe, G. Seiler and
D. Stehlé, “CRYSTALS-Dilithium Algorithm
Specifications and Supporting Documentation”,
IACR Transactions on Cryptographic Hardware
and Embedded Systems (TCHES), 2018, Issue
1, https://doi.org/10.13154/tches.v2018.

i1.238-268

[12] Open Quantum Safe organization, “C
library for prototyping and experiment-
ing with quantum-resistant cryptogra-
phy,” Online on Github, 2018, https:

//github.com/open-quantum-safe/liboqs

[13] J. Bos et al., “Kyber,” Online on Github, 2018,
https://github.com/pq-crystals/kyber

[14] T. Fischer, “Testing Cryptographically Secure
Pseudo Random Number Generators with Arti-
ficial Neural Networks,” 2018 17th IEEE Inter-
national Conference On Trust, Security And Pri-
vacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Sci-
ence And Engineering (TrustCom/BigDataSE),
2018, pp. 1214–1223, https://doi.org/10.

1109/TrustCom/BigDataSE.2018.00168

[15] Federal Office for Information Security,
atsec information security GmbH, “Docu-
mentation and analysis of the linux ran-
dom number generator”, Version 4.11, 2022,
https://www.bsi.bund.de/SharedDocs/

Downloads/EN/BSI/Publications/Studies/

LinuxRNG/LinuxRNG_EN_V4_5.pdf

[16] N. Heninger, Z. Durumeric, E. Wustrow and J.
A. Halderman, “Mining Your Ps and Qs: Detec-
tion of Widespread Weak Keys in Network De-
vices,” USENIX Security Symposium., vol. 12,
2012, pp. 205–220

[17] S. M. Burkhardt, “ fhnw-ise-qcrypt/PQKEX-
nanosat-src”, FHNW ISE (Post-)Quantum
Cryptography Group on Github, 2021,
https://github.com/fhnw-ise-qcrypt/

PQKEX-nanosat-src

[18] A. Reezwana, T. Islam, J. A. Grieve, C.
F. Wildfeuer and A. Ling, “Generating Quan-
tum Random Numbers on a CubeSat (SpooQy-
1),” 2020 Conference on Lasers and Electro-
Optics (CLEO), 2020, pp. 1–3, https://10.

1364/CLEO_AT.2020.ATu3S.3

Burkhardt 9 36th Annual Small Satellite Conference

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://github.com/libcsp/libcsp
https://github.com/libcsp/libcsp
https://doi.org/10.1364/OPN.23.10.000042
https://doi.org/10.1364/OPN.23.10.000042
https://doi.org/10.1038/srep06366
https://doi.org/10.1038/srep06366
https://doi.org/10.1103/PhysRevApplied.5.054022
https://doi.org/10.1103/PhysRevApplied.5.054022
https://doi.org/10.1364/OPTICA.387306
https://doi.org/10.1364/OPTICA.387306
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/pq-crystals/kyber
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00168
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00168
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN_V4_5.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN_V4_5.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN_V4_5.pdf
https://github.com/fhnw-ise-qcrypt/PQKEX-nanosat-src
https://github.com/fhnw-ise-qcrypt/PQKEX-nanosat-src
https://10.1364/CLEO_AT.2020.ATu3S.3
https://10.1364/CLEO_AT.2020.ATu3S.3

