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Abstract: By using compound-specific isotope analysis (CSIA) in combination with high-throughput
sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a
bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under
stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared
with the apparent removal rate. Both an increase in the influent concentration and the addition
of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was
inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial
community responsible for the biodegradation of BTEX increased with the influent concentration.
However, the dominant bacterial community did not change, and its relative abundance was restored
after the influent concentration decreased. On the contrary, the addition of TCE significantly changed
the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE
and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent
concentration, although these two stress conditions showed a similar degree of influence on the
apparent removal rate of benzene and toluene. The present work not only provides a new method
for accurately evaluating the biodegradation performance and microbial community in a bio-PRB,
but also expands the application of compound-specific isotope analysis in the biological treatment
of wastewater.

Keywords: bio-permeable reactive barrier; biodegradation; BTEX; compound-specific isotope
analysis; high-throughput sequencing analysis

1. Introduction

Due to their neurotoxic, carcinogenic, and teratogenic properties, aromatic hydrocar-
bon compounds including benzene, toluene, ethylbenzene, and xylene (BTEX) isomers
pose a great risk to the environment and human health. As typical BTEX compounds, ben-
zene and toluene have frequently been detected in groundwater because of the inefficient
treatment of industrial waste and its leakage [1–4].

Various technologies have been developed to remove BTEX from groundwater, includ-
ing physical methods (stripping, in-situ air sparging, adsorption, and filtration); chemical
methods (chemical oxidation and photocatalysis); and biological methods (bioremediation,
bioaugmentation in reactors, phytoremediation, and wetland restoration) [4–9]. Compared
with the physical and chemical methods, which face the problem of a high operation
cost and secondary pollution, bioremediation is considered a more economic and efficient
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method for BTEX degradation [10–12]. As the typical bioremediation method, the appli-
cation of bio-permeable reactive barrier (bio-PRB) technology for the in situ remediation
of BTEX-contaminated groundwater has attracted great interest [13]. Previous research
has demonstrated that indigenous microorganisms detected in polluted groundwater/soil,
such as Actinobacteria, Rhodococcus, Arthrobacter strains, and Proteobacteria, possess higher
BTEX degradation activity [14–24]. Thus, BTEX could be adsorbed on the filler and sub-
sequently degraded through anaerobic degradation pathways (Figures 1 and 2). Many
studies have determined the BTEX removal rate in bio-PRBs under different conditions
in order to optimize the operation parameters [25–29]. However, most of these studies
neglected the fact that the BTEX removal rate is not the same as the actual biodegradation
rate. The BTEX removed by physicochemical transformation (e.g., dilution, dispersion,
volatilization, and sorption) can be discharged into the groundwater again after a certain
period of time, causing secondary pollution. Thus, optimizing the operating parameters
of the biodegradation process based on the BTEX removal rate is inaccurate. On the other
hand, although conventional molecular methods such as terminal restriction fragment
length polymorphism, polymerase chain reaction/denaturing gradient gel electrophoresis,
and cloning have been applied to determine the microbial community responsible for BTEX
removal [30–32], the conclusions drawn from the evaluation of the BTEX removal rate in
these studies were also inaccurate. In recent years, the aforementioned traditional molecu-
lar approaches have not been able to provide comprehensive insights into the structural and
functional changes in the microbial community [33,34]. Thus, it is necessary to illustrate the
relationship between the microbial community and the BTEX biodegradation performance.

In recent years, compound-specific isotope analysis (CSIA) has been applied to evalu-
ate organic biodegradation through physicochemical processes according to stable isotope
fractionation [35–37]. In addition, with the development of molecular biology technology,
researchers have established high-throughput sequencing (HTS) methods, including am-
plicon and shotgun sequencing, with a sequencing depth and accuracy sufficient to cover
complex bacterial communities [38,39]. Furthermore, since microbial activity is sensitive to
environmental conditions, much attention has been paid to variations in BTEX biodegrada-
tion activity under stress conditions, especially when inhibited by high-concentration or
combined pollutants [26,28,40]. As a typical volatile chlorinated hydrocarbon, TCE often
co-exists with petroleum hydrocarbons [26], which could alter enzyme conformation and
block essential functional groups, causing a decrease in the biodegradation capacity [40].
Thus, further investigation of the benzene and toluene biodegradation performance of
bio-PRBs under stress conditions (i.e., with an increase in the influent concentration and
the addition of TCE) is significant both theoretically and for engineering applications.

Herein, we report the application of CSIA in combination with HTS for the first time,
a technique that can determine the relationships between the bacterial community and the
actual BTEX biodegradation rate under stress conditions. This study not only provided
a method for evaluating the biodegradation performance of non-degradable processes,
but also helped us more accurately regulate the operational conditions of the bio-PRB to
improve its biodegradation capacity.
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Figure 1. Three anaerobic degradation pathways proposed for benzene. Square brackets indicate a 
postulated intermediate; broken arrows indicate multiple enzymatic steps; open arrows indicate 
further metabolism. (a) Hydroxylation to form phenol, cyclohexanone, or p-hydroxybenzoate and 
benzoyl-CoA. (b) Carboxylation to form benzoate (possibly through more than one enzymatic 
step) and benzoyl-CoA. The carboxyl donor is unlikely to be bicarbonate but may be derived from 
benzene. (c) Alkylation to form toluene, followed by fumarate addition to form benzylsuccinate 
and benzoyl-CoA [41,42]. 
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Figure 2. Anaerobic microbial degradation pathway of toluene. The first step in the catabolism of 
toluene is the addition of toluene to the double bond of fumarate to form benzylsuccinate by ben-
zylsuccinate synthase (bss). Benzylsuccinate is then activated to CoA-thioester by a suc-
cinyl-CoA-dependent CoA-transferase, and benzylsuccinyl-CoA is then converted to suc-
cinyl-CoA and benzoyl-CoA. Benzoyl-CoA reductase initiates the degradation of benzoyl-CoA, 
which is thereafter further oxidized via reductive ring cleavage to carbon dioxide [43,44]. 

2. Materials and Methods 
2.1. Chemicals 

Benzene, toluene, and TCE (trichloroethylene) were supplied by Sigma-Aldrich 
(China, ≥99% GR). NaOH, Na2SO4, KH2PO4, K2HPO4, CaCl2, and MgSO4 were purchased 
from Aladdin (China, ≥99%, AR). 

Figure 1. Three anaerobic degradation pathways proposed for benzene. Square brackets indicate
a postulated intermediate; broken arrows indicate multiple enzymatic steps; open arrows indicate
further metabolism. (a) Hydroxylation to form phenol, cyclohexanone, or p-hydroxybenzoate and
benzoyl-CoA. (b) Carboxylation to form benzoate (possibly through more than one enzymatic
step) and benzoyl-CoA. The carboxyl donor is unlikely to be bicarbonate but may be derived from
benzene. (c) Alkylation to form toluene, followed by fumarate addition to form benzylsuccinate and
benzoyl-CoA [41,42].
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Figure 2. Anaerobic microbial degradation pathway of toluene. The first step in the catabolism
of toluene is the addition of toluene to the double bond of fumarate to form benzylsuccinate by
benzylsuccinate synthase (bss). Benzylsuccinate is then activated to CoA-thioester by a succinyl-
CoA-dependent CoA-transferase, and benzylsuccinyl-CoA is then converted to succinyl-CoA and
benzoyl-CoA. Benzoyl-CoA reductase initiates the degradation of benzoyl-CoA, which is thereafter
further oxidized via reductive ring cleavage to carbon dioxide [43,44].

2. Materials and Methods
2.1. Chemicals

Benzene, toluene, and TCE (trichloroethylene) were supplied by Sigma-Aldrich (China,
≥99% GR). NaOH, Na2SO4, KH2PO4, K2HPO4, CaCl2, and MgSO4 were purchased from
Aladdin (China, ≥99%, AR).
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2.2. Column Experimental Setup

The column of the bio-PRB system had a working volume of 3.2 L, inner diameter
of 8.0 cm, and height of 92.0 cm (Figure 3). The reactor was inoculated with sludge
(50.0 g VSS L−1) from a secondary sedimentation tank (BASF-YPC, Nanjing, China). The
composition of the simulated groundwater used in this experiment is summarized in
Table S1. The start-up process lasted for 30 d until the bio-PRB system reached a stable
state (Table S2), during which the influent glucose concentration was 300 mg L−1, with a
flow velocity of 1.1 mL min−1.
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After the start-up process, the bio-PRB system continuously ran for a total of 200 d,
which was divided into five periods. In each period, a different concentration of target pol-
lutants (benzene and toluene) and co-existent pollutant (TCE) were added to the simulated
groundwater (Table S2). The effluent of the bio-PRB system was sampled every 48 h, and
the samples were collected in 40 mL standard VOC glass vials without headspace. In order
to preserve isotope-containing samples, the pH was adjusted to 10 ± 0.1 with NaOH to
prevent inactivation by active microorganisms. The samples were sealed and immediately
stored at 4 ◦C before being analyzed within 7 d.

2.3. Batch Experiments

Batch experiments were carried out to study the biodegradation kinetics and calculate
the carbon isotope enrichment factors for benzene and toluene. The actual biodegradation
rates of benzene and toluene in each period could be calculated according to the carbon
isotope values. The batch experiment process was conducted as follows: 50 mL sludge
sample was removed from the bio-PRB at the end of each period. Then, the sludge aliquot
and 430 mL of synthetic groundwater were added into a 480 mL amber boston round bottle
with PTFE liner (Table S3), followed by shaking (120 rpm) at 30 ◦C for 48 h. Controls were
first autoclaved, cooled, and spiked with benzene and toluene for corresponding treatments.
The concentrations of benzene and toluene in the control sample were 10 mg L−1. Samples
(15 mL) were taken at various time intervals in standard VOC glass vials (25 mL) for the
analysis of carbon isotope values and concentration of benzene and toluene.
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2.4. Quantification of Benzene, Toluene, and TCE

Analyses of benzene, toluene, and TCE were conducted in accordance with US EPA
Method 8260, measured with a purge and trap concentrator (Tekmar, Waltham, MA,
USA) followed by gas chromatography equipped with a silica HP-5 capillary column
(30 m × 0.25 mm × 0.25 µm, J&W Scientific, Folsom, CA, USA) and a flame ionization
detector (GC-FID, Agilent-7820, Palo Alto, Santa Clara, CA, USA). A sample (5 mL) was
introduced into the purging vessel with a syringe [45]. The sample was purged with
helium gas at 35 mL min−1 for 11 min. The purged volatile compounds were trapped on a
Tenax trap. The trap was heated to 225 ◦C and kept at the same temperature for 2 min to
desorb benzene and toluene, which were then applied to the GC column. The operating
parameters and flow rates were as follows: the injector and detector temperatures were set
at 280 ◦C and 220 ◦C, respectively; the split ratio was 5:1; and the oven temperature was
held at 30 ◦C for 3 min, then programmed at 15 ◦C min−1 to 180 ◦C.

2.5. CSIA Analysis

Compound-specific isotope analysis (CSIA) of benzene and toluene was conducted us-
ing a continuous-flow GC-C-IRMS consisting of a TRACE GC Ultra, oxidation reactor, and
MAT 253 isotope ration mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).
The GC was fitted with a DB-5 capillary column (30 m× 0.25 mm× 0.25µm, J&W Scientific,
Folsom, CA, USA). Benzene and toluene were extracted from samples using a Solid Period
Micro Extraction (SPME) fiber at 25 ◦C. Benzene and toluene working standards calibrated
against international reference materials for carbon isotopes were prepared and analyzed
using the same method as for the real samples to correct for any isotope fractionation
occurring during SPME extraction. Benzene and toluene were desorbed from the SPME
fiber in the GC inlet at 270 ◦C then separated in the GC column. The GC temperature was
held at 40 ◦C for 3 min then increased at 15 ◦C min−1 to 180 ◦C. The helium carrier gas flow
through the column was 1.5 mL min−1. The oxidation reactor for 13C/12C was set at 940 ◦C.
The pulse of the reference gas (CO2, δ13C: −26.42‰ VPDB) was used for the computation
of the isotopic values of sample compounds. Benzene standards were analyzed three times
under the same operating conditions, and the standard deviation of the measurements was
typically within ±0.5‰ [46,47].

2.6. DNA Extraction and PCR Amplification

After the start-up process, the biofilm samples were collected via sampling ports of the
bio-PRB system at the end of each operational period. Briefly, total DNA from five different
biofilm samples was extracted using a FastDNA® SPIN Kit for Soil (MP Biomedicals, Santa
Ana, CA, USA) following the manufacturer’s instructions. DNA concentration and purity
were measured by means of micro-spectrophotometry (NanoDrop® ND-1000, NanoDrop
Technologies, Willmington, DE, USA).

Amplification of the 16S rRNA gene was performed with primers 27F
(5′-AGAGTTTGATYMTGGCTCAG-3′) and 338R (5′-TGCTGCCTCCCGTAGGAGT-3′) for
bacteria. Polymerase chain reaction (PCR) amplification was carried out in a 30 µL reaction
volume containing 2 µL template DNA; 100 mM dNTP; 1 PCR buffer; 1 U of EXTaq poly-
merase (TransGen Biotech, Beijing, China); and 2 mM of each primer set (Table S4). Thermal
cycling consisted of initial denaturation for 5 min at 94 ◦C; 40 cycles of denaturation at
95 ◦C for 30 s, annealing at 55 ◦C for 45 s, and elongation at 72 ◦C for 50 s; followed by a
5 min extension at 72 ◦C.

2.7. Quantitative Real-Time PCR (q-PCR)

Real-time PCR was performed for all samples using oligonucleotides that were de-
signed to target dsrA and bssA. The PCR primer sets dsrAf-dsrAr and bssAf-bssAr were
specific for genes dsrA and bssA [48–50]. The key functional genes for dsrA and bssA
wereamplified using the primers DSR1F (5′-ACSCACTGGAAGCACG-3′)/DSR5R
(5′-TGCCGAGGAGAACGATGTC-3′) and BSSAF (5′-ACGACGGYGGCATTTCTC-3′)/BSSAR
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(5′-GCATGATSGGYACCGACA-3′). The q-PCR mixture (20 mL) contained 10 mL of SYBR
Premix EXTaq Super Mix (TaKaRa Japan), 0.3 mL of each primer set (10 mM), 8 mL of tem-
plate DNA (5 ng/mL), and 1.4 mL of distilled H2O (ddH2O). The real-time PCR program
was performed as follows: the reactions were run for 50 cycles of initial denaturation for
10 min at 95 ◦C, denaturation at 95 ◦C for 15 s, annealing for 1 min at 55 ◦C, and elongation
at 72 ◦C for 20 s. In the study conducted by Rhee, DNA cloning was used to construct
recombinant plasmids carrying dsrA and bssA, and five- to seven-point calibration curves
(Ct values versus log of initial target gene copy) were generated for the q-PCRs using
a 10-fold serial dilution of the plasmid [51]. In order to take into account the variation
in the DNA extraction efficiency for each sample, the relative abundance of each target
gene was normalized to the eubacterial 16S rRNA gene [52]. The reaction efficiency of
dsrA was 85.2%, and that of bssA was 104.7%, with R2 values higher than 0.995 for all
calibration curves.

2.8. Illumina High-Throughput Sequencing

The biofilm samples were sent to Majorbio Bio-pharm Biotechnoly Co., Ltd. (Shang-
hai, China) for Illumina high-throughput sequencing on the MiSeq platform (Illumina,
San Diego, CA, USA). Raw sequences were generated using the sequencing strategy of
Index 101 PE (paired-end sequencing, 101-bp reads and 8-bp index sequence). The quality
control (QC) pipeline was applied to remove the adaptor at the end of reads. Unknown nu-
cleotides of the raw sequences were removed first, and then Galaxy (http://usegalaxy.org/,
accessed on 1 October 2021) was used to conduct a stricter filtration. In order to ensure that
each filtered read had a high Illumina quality score, quality formats were converted and
low-quality sequences were removed.

The filtered Illumina reads of the five biofilm samples were processed and analyzed
on http://www.i-sanger.com/ (accessed on 1 October 2021). The results were subsampled
into 35, 128 sequences (i.e., the number of sequences in the sample with the least number of
sequences). The confidence threshold of 97% recommended by the RDP was applied to
strictly assign the sequences to different taxonomy levels. Sequences were clustered into
operational taxonomic units (OTUs).

2.9. Isotope Calculations

Stable carbon isotope ratios were expressed as δ13C values relative to Vienna Pee Dee
Belemnite (VPDB) according to international standards, as in Equation (1) [53,54].

δ =
Rsample − Rstandard

Rstandard
× 1000‰ (1)

Benzene and toluene with heavy and light isotopes are degraded at slightly different
rates, reflecting the kinetic isotope effects. The carbon isotope value of residual benzene
and toluene, the non-degraded fraction of pollutant molecules, changes according to the
Rayleigh equation [55,56]:

ln
(

1000 + δt

1000 + δ0

)
= (α− 1)× ln f =

ε

1000
× ln f (2)

f =
c
c0

(3)

where f is the fraction of non-degraded benzene or toluene, δt is the corresponding carbon
isotope value, and δ0 is the carbon isotope value of benzene or toluene at the beginning of
the degradation (f = 1). In Equation (2), ε is the isotope enrichment factor, which indicates
the change in the isotope ratios according to the extent of transformation. A value of
ε > 0 indicates a normal isotope effect, whereby benzene or toluene with light isotopes is
degraded preferentially. As for ε < 0, the preferential degradation of heavy isotopes results

http://usegalaxy.org/
http://www.i-sanger.com/
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in an inverse isotope effect. In Equation (3), c is the corresponding concentration and c0 is
the concentration of benzene or toluene at the beginning of the degradation.

The actual biodegradation rates of benzene and toluene were calculated according
to Equation (4), using the ‘ε’ value from the batch experiment and the δ13C value of the
bio-PRB, where B is the actual biodegradation rate in the bio-PRB system [57].

B = (1− f )× 100% =

[
1−

(
1000 + δ

1000 + δ0

)1000/ε
]
× 100% (4)

3. Results and Discussion
3.1. Apparent Removal Rate of Benzene and Toluene in Bio-PRB System

Although benzene and toluene (both at an influent concentration of 10 mg L−1)
replaced glucose as the carbon source in period 1 (Figure 4), the bio-PRB system could still
effectively remove benzene and toluene from the synthetic groundwater. In periods 2–3,
the removal rate of benzene decreased when the influent concentration increased from
10 mg L−1 to 30 mg L−1, suggesting a stress effect on the bio-PRB. However, when the
influent concentration of benzene and toluene was reset to 10 mg L−1, the apparent removal
rate of benzene was restored. The addition of TCE slightly inhibited the apparent removal
rate of benzene (Figure 4A). In contrast to benzene, toluene could be effectively removed
by the bio-PRB even when the influent concentration increased to 30 mg L−1, suggesting
that an increase in the concentration of benzene and toluene did not cause an obvious
stress effect on the apparent removal rate of toluene in the bio-PRB. Furthermore, although
previous studies have reported that TCE had an inhibitory effect on the biodegradation
of BTEX [26,58–60], our present work indicated that addition of TCE had little impact on
the apparent removal rate of toluene. Thus, if we were to evaluate the influence of stress
conditions on the bio-PRB based only on the apparent removal rate of BTEX, we would
probably draw the wrong conclusions. On the other hand, more than 50% of the TCE was
removed by the bio-PRB in period 5, which suggested the cometabolic biodegradation
of benzene, toluene, and TCE in the bio-PRB. This cometabolism is discussed further in
Sections 3.5 and 3.6.
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3.2. Batch Biodegradation Kinetics

Batch experiments corresponding to five stages in the bio-PRB process were conducted
to elucidate the biodegradation kinetics. In contrast to the apparent removal rates in the
bio-PRB, the biodegradation kinetic rate of benzene and toluene in the batch experiments
decreased under stress conditions (Figure 5). The benzene and toluene biodegradation rate
constants in each period were obtained according to the pseudo-first-order equation and
ranged from 0.0809 h−1 to 0.4468 h−1 and 0.1020 h−1 to 0.4618 h−1, respectively (Figure 5).
In period 1, the bio-PRB demonstrated high biodegradation rate constants for benzene
and toluene. With an increased influent concentration (periods 2 and 3), the benzene and
toluene biodegradation rate constants decreased, suggesting an inhibition of the microbial
activity. However, when the influent concentration of benzene and toluene decreased
to 10 mg L−1 in period 4, the biodegradation rate constants and half-lives were almost
restored, indicating the recovery of the microbial activity. Notably, when TCE (0.5 mg L−1)
was added in period 5, not only did the benzene and toluene biodegradation rate constants
decrease, but the half-lives of the benzene and toluene were prolonged. Hence, although
the bio-PRB maintained a high apparent removal rate of benzene and toluene under stress
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conditions (Figure 4), the biodegradation kinetics of benzene and toluene were seriously
inhibited. This conclusion is further discussed and confirmed in the following section.
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3.3. Compound-Specific Isotope Analysis

Microorganisms preferentially use lighter isotope species due to the lower energy
cost, resulting in fractionations between heavier and lighter isotopes. Thus, positive shifts
in the ratio of 13C to 12C (higher δ13C values) in organic pollutants could represent the
biodegradation rate [44,53]. According to this method, we evaluated the biodegradation
rate of benzene and toluene based on the shifts in the isotopic composition in each period
(Figure 6). The δ13C value of both benzene and toluene in all periods changed over time,
namely ∆13C = +4.8‰~+6.0‰ VPDB for benzene and +1.7‰~+2.7‰ VPDB for toluene,
which represented the microbial activity for the biodegradation of benzene and toluene.
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In order to illustrate the correlation between the initial organic pollutant (benzene or
toluene) concentration and the isotope ratios, these parameters were plotted according to
the Rayleigh equation (Equation (2)). Data pertaining to the benzene and toluene from
each individual experimental period were fit using the Rayleigh model (Figure 7) with
R2 = 0.8878~0.9922 and 0.9061~0.9803, respectively (Table 1), which indicated that the
Rayleigh enrichment factors (εc) of benzene (−3.4‰ to −1.0‰) were influenced not only
by the influent concentration but also by the addition of TCE. The εc values of benzene were
−1.0‰, −2.3‰, and −3.4‰ in periods 1, 2, and 3, respectively, indicating that benzene
biodegradation was inhibited by an increase in the influent concentration. However, in
period 4, the εc of benzene increased to−1.3‰ as the influent concentration was reduced to
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10 mg L−1, suggesting that the benzene biodegradation activity recovered. In addition, due
to the inhibition caused by TCE, the åc of benzene decreased to −2.8‰ again in period 5.
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Table 1. Enrichment factors (εc) of benzene and toluene biodegradation in different periods (n = 3).

Period εc of Benzene (‰) R2 εc of Toluene (‰) R2

1 −1.0 0.9922 −0.4 0.9615
2 −2.3 0.9372 −0.4 0.9803
3 −3.4 0.9099 −0.3 0.9061
4 −1.3 0.8878 −0.4 0.9062
5 −2.8 0.9710 −0.8 0.9559
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Previous research has reported that variation in the microbial community in the bio-
PRB led to different enrichment factors in each period. Thus, microorganisms belonging
to different phylogenetic groups generated different extents of stable isotopic fractiona-
tion due to the influence of processes such as uptake into the cell, transport across the
membrane, and binding to the enzyme in the bio-PRB [44,61]. Our previous laboratory
studies with anaerobic benzene biodegradation cultures showed pronounced carbon iso-
tope fractionation under sulfate-reducing (εc = −3.6‰) and methanogenic conditions
(εc = −2.1‰~1.9‰) [44,47]. The variation in the carbon isotope fractions of benzene in
different periods suggested that the total number of methanogenic bacteria decreased,
while sulfate-reducing bacteria gradually grew to be the dominant population with the con-
tinuous increase in the influent concentration. Meanwhile, the decrease in the enrichment
factors in period 5 indicated that the sulfate-reducing bacteria had stronger tolerance than
methanogenic bacteria under the TCE stress conditions.

In contrast to benzene, the enrichment factors of toluene were not influenced by the
influent concentrations, although a slight variation in the εc (−0.4‰ to −0.3‰) caused by
a statistical error was observed in period 3 [61]. Previous studies have also reported only a
slight variation in the carbon isotope fractionation of toluene via the anaerobic pathway
involving monooxygenase or dioxygenase [62]. In addition, the slight variation in the
εc value (−0.4‰ to −0.8‰) observed in period 5 also led to the serious inhibition of the
toluene biodegradation. On the other hand, although the rate limitation in the transition
state of the bond cleavage and the nature of the chemical reaction could influence the extent
of the kinetic isotope effect, complex enzyme-catalyzed reactions are the rate-limiting steps
that affect the “apparent” isotope [63].

3.4. Calculation of Actual Biodegradation Rates of Benzene and Toluene in Bio-PRB

In a bio-PRB, BTEX can be removed by biodegradation and physical separation (e.g.,
dilution, dispersion, volatilization, and sorption). Biodegradation is the process in which
BTEX are degraded by microorganisms, while the latter is the transfer process whereby
BTEX are likely to leak into the groundwater again after a certain period of time, leading to
secondary pollution. Since the adsorption of benzene and toluene cannot influence their
carbon isotope fractionations, the actual biodegradation rates of benzene and toluene in
different periods could be calculated by the carbon isotope enrichment factors obtained
from the batch experiments and the δ13C value of the bio-PRB (Table 2) calculated according
to Equation (3). The actual biodegradation rate of benzene decreased from 99.62% to 77.81%
as the influent concentration increased to 30 mg L−1 in period 3 and, subsequently, was
restored to 98.74% when the influent concentration returned to 10 mg L−1 in period 4.
This indicated that although an increasing benzene and toluene influent concentration
had a stress effect on the biodegradation of benzene, this inhibition almost disappeared
as the influent concentration decreased to the initial level. On the contrary, the actual
biodegradation rate of toluene remained stable during periods 1–4, which indicated that
increasing the influent concentration of benzene and toluene did not have an obvious
inhibitory effect on the toluene biodegradation. In addition, the actual biodegradation
rates of benzene and toluene decreased from 98.74% to 80.26% and from 99.27% to 85.75%,
respectively, in period 5, which indicated that both benzene and toluene biodegradation
were inhibited by TCE in the bio-PRB.
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Table 2. Actual biodegradation rate and apparent removal rate of benzene and toluene in different
periods.

Period δ13C of Remaining
Benzene

Actual
Biodegradation
Rate of Benzene

(%)

Apparent Removal
Rate of Benzene

(%)

δ13C of Remaining
Toluene

Actual
Biodegradation
Rate of Toluene

(%)

Apparent Removal
Rate of Toluene

(%)

1 −21.4689 99.62 99.83 −26.0785 99.59 99.97
2 −22.0532 89.40 92.37 −26.5468 98.37 99.88
3 −22.1076 77.81 82.00 −27.2187 98.10 99.55
4 −21.2965 98.74 99.36 −26.3108 99.27 99.85
5 −22.4165 80.26 95.18 −26.6258 85.75 99.89

It was noteworthy that the apparent removal rates of benzene and toluene were much
higher than their actual biodegradation rates, as calculated by the carbon isotope enrich-
ment factors of the batch experiments and the δ13C value of the bio-PRB. This significant
difference may be explained as follows: On the one hand, the active microorganisms were
inhibited under stress conditions, resulting in a decrease in the actual biodegradation rates
of benzene and toluene. On the other hand, although the biofilm of the bio-PRB aged
and then detached from the filler as the operation proceeded, the detachment of the aging
biofilm from the porcelain granules led to the exposure of a greater surface area and more
pore channels, increasing the adsorption of benzene and toluene to a certain degree, which
could have offset the inhibition of active microorganisms under stress conditions (Figure
S2). Thus, according to the above results, both the apparent removal rate and biodegrada-
tion rate of organic pollutants should be determined in order to accurately evaluate the
biodegradation of organic pollutants in bio-PRBs.

3.5. Functional Gene Copies in Bio-PRB System

Benzylsuccinate synthase (bssA) has frequently been found in denitrifying, sulfate-
reducing, and methanogenic bacteria that are responsible for toluene biodegradation [49].
In addition, dissimilatory sulfite reductase (dsrA) is a key enzyme for sulfate reduction in all
sulfate-reducing bacteria that it is used as a biomarker to directly analyze the populations
of these bacteria [64]. In order to further elucidate the benzene and toluene biodegradation
mechanisms, the abundance of related functional genes (bssA, dsrA) was monitored using
q-PCR analysis. Due to the induction of toluene, the abundance of bssA increased with the
influent concentration of benzene and toluene in periods 1–3 (Figure 8). The high amount
of bssA in period 4 was a remnant of the high level in period 3. The increase in the influent
concentration could stimulate the expression of dsrA, showing a significant correlation
with dsrA copies [65]. However, the high concentration of the carbon source (glucose:
300 mg L−1) used in the start-up period led to a high amount of dsrA copies in the bio-PRB,
which caused the dsrA level to remain high in period 1. Thus, the increase in the influent
concentrations could have stimulated the microbes in the bio-PRB so as to increase the
related functional genes (bssA and dsrA), which is consistent with previous studies [66].
Notably, the number of dsrA copies increased while the number of bssA copies decreased
under TCE stress in period 5, indicating a cometabolic effect involving benzene, toluene,
and TCE. Previous research has also reported similar cometabolic biodegradation in the
biodegradation of PCBs. Thus, the co-metabolic biodegradation of TCE, benzene, and
toluene by dsrA probably in turn stimulated and increased the amount of dsrA.

Among the functional genes tested in this study, bssA had a higher abundance in
periods 2–5 (Figure 8). The maximum difference between dsrA and bssA in period 4
suggested that methanogenic bacteria became the dominant population. Moreover, the
minimal difference between dsrA and bssA in period 5 suggested that sulfate-reducing
bacteria gradually grew to be the dominant population and that the methanogenic process
was inhibited. The results were consistent with the analysis of the carbon isotope values in
all periods.



Int. J. Environ. Res. Public Health 2022, 19, 8800 14 of 22

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 14 of 22 
 

cess was inhibited. The results were consistent with the analysis of the carbon isotope 
values in all periods.  

 

Figure 8. Absolute abundance of dsrA and bssA genes in bio-PRB system in different periods. 

3.6. Bacterial Community Analyses 
To further explore the influence of stress conditions on the microbial community, 

the microbiocenoses in the bio-PRB were analyzed. All raw reads were generated from 
the Illumina high-throughput sequencing Mi-Seq platform. After quality filtration, all 
data sets were randomly subsampled to an equal depth of 35128 OTUs. The rarefaction 
curves indicated an adequate level of sequence coverage for the total community analy-
sis of all periods (Figure S1). The OTU classification data of the total DNA samples were 
used to determine the bacterial community composition in each of the five samples. The 
bacterial communities corresponding to the sequences of the total genomic DNA sam-
ples (relative abundance >1%) are shown in Figures 9–11. 

It was observed that the bacterial community of the bio-PRB varied across different 
periods. Besides the small percentage of unclassified bacteria, Proteobacteria were the 
most abundant (relative abundance of 35.9–79.7%) phylum, followed by Bacteroidetes 
(1.51–20.9%) and Ignavibacteriae (1.15–9.82%) (Figure 9A). Since Ignavibacteriae, Bac-
teroidetes, Aminicenantes, and Proteobacteria are frequently found in BTEX-impacted envi-
ronments [24,66–68], the present work focused on these four dominant phyla. The rela-
tive abundance of Proteobacteria increased with the influent concentration of benzene and 
toluene, which indicated that Proteobacteria had a strong tolerance to a high concentra-
tion of benzene and toluene. Moreover, Betaproteobacteria was the most dominant class in 
the bio-PRB, and its relative abundance was positively correlated to the influent concen-
tration of benzene and toluene (Figure 10). It has been reported that increasing the in-
fluent concentration of benzene and toluene in an anaerobic environment could lead to 
the acidification of the bio-PRB [24]. Thus, with its strong tolerance to acidic environ-
ments, Betaproteobacteria is responsible for the biodegradation of benzene and toluene 
even at a high influent concentration. In addition, at the genus level, the relative abun-
dance of unclassified_c_Betaprobeobacteria and Ignavibacterium increased with the influent 
concentration, showing a strong tolerance to a high concentration of benzene and toluene 
(Figure 11). Notably, the abundance of these dominant bacteria communities (Proteobac-

Figure 8. Absolute abundance of dsrA and bssA genes in bio-PRB system in different periods.

3.6. Bacterial Community Analyses

To further explore the influence of stress conditions on the microbial community, the
microbiocenoses in the bio-PRB were analyzed. All raw reads were generated from the
Illumina high-throughput sequencing Mi-Seq platform. After quality filtration, all data
sets were randomly subsampled to an equal depth of 35128 OTUs. The rarefaction curves
indicated an adequate level of sequence coverage for the total community analysis of all
periods (Figure S1). The OTU classification data of the total DNA samples were used to
determine the bacterial community composition in each of the five samples. The bacterial
communities corresponding to the sequences of the total genomic DNA samples (relative
abundance >1%) are shown in Figures 9–11.
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It was observed that the bacterial community of the bio-PRB varied across different
periods. Besides the small percentage of unclassified bacteria, Proteobacteria were the most
abundant (relative abundance of 35.9–79.7%) phylum, followed by Bacteroidetes (1.51–20.9%)
and Ignavibacteriae (1.15–9.82%) (Figure 9A). Since Ignavibacteriae, Bacteroidetes, Amini-
cenantes, and Proteobacteria are frequently found in BTEX-impacted environments [24,66–68],
the present work focused on these four dominant phyla. The relative abundance of Pro-
teobacteria increased with the influent concentration of benzene and toluene, which indicated
that Proteobacteria had a strong tolerance to a high concentration of benzene and toluene.
Moreover, Betaproteobacteria was the most dominant class in the bio-PRB, and its relative
abundance was positively correlated to the influent concentration of benzene and toluene
(Figure 10). It has been reported that increasing the influent concentration of benzene and
toluene in an anaerobic environment could lead to the acidification of the bio-PRB [24].
Thus, with its strong tolerance to acidic environments, Betaproteobacteria is responsible
for the biodegradation of benzene and toluene even at a high influent concentration. In
addition, at the genus level, the relative abundance of unclassified_c_Betaprobeobacteria and
Ignavibacterium increased with the influent concentration, showing a strong tolerance to a
high concentration of benzene and toluene (Figure 11). Notably, the abundance of these
dominant bacteria communities (Proteobacteria and Bacteroidetes) in period 4 was similar to
that in period 1, suggesting the restoration of microbe communities. This inference is also
verified by the high biodegradation rate of benzene and toluene in period 4 (Figure 9B).

The addition of TCE not only inhibited actual biodegradation (Figure 9B) but also
caused changes in the bacterial community (increase in species diversity) in the bio-PRB
(Table S5). The dominant bacterial community (Ignavibacteriae and Bacteroidetes at the
phylum level, Ignavibacteria and Bacteroidia at the class level) varied significantly. The
newly appeared Aminicenantes, responsible for the biodegradation of TCE, became the
most dominant phylum (relative abundance = 44.6%) [67], while the relative abundance
of Proteobacteria (35.9%), Bacteroidetes (1.53%), and Ignavibacteriae (2.91%) drastically de-
creased. Aminicenantes are anaerobic bacteria that can be found in hydrocarbon-polluted
environments. Due to its high intraphylum metabolic diversity and adaptive capabilities,
Aminicenantes can survive in a wide range of pH and environmental conditions [68]. Thus,
Aminicenantes alleviated the TCE stress in the bio-PRB and played a primary role in the
biodegradation of TCE, benzene, and toluene. Furthermore, at the genus level (Figure 11),
unclassified_c_Betaprobeobacteria) and Ignavibacterium decreased significantly, suggesting
their inhibition by TCE stress. Although the syntrophic acetogenic bacteria Petrimonas is
responsible for BTEX biodegradation via the production of electron donors (hydrogen) for
TCE degradation [69], the decrease in the relative abundance of Petrimonas inhibited the
hydrogen production under TCE stress. On the contrary, norank_p_Aminicenantes, which
appeared with a high abundance, played an important role in the bio-PRB under TCE
stress. Although Acidovorax has been described as capable of degrading BTEX [24,67,68],
its poor tolerance to TCE stress meant that it hardly contributed to BTEX biodegradation in
our experiment.

The Venn map of the bio-PRB system indicated that 523 unique OTUs were detected
across the five periods (Figure 12). Among them, 64 OTUs were detected in all periods. The
number of unique OTUs in periods 2, 3, and 5 was 52, 0, and 145, respectively, suggesting
that the addition of TCE influenced bacterial community diversity more substantially than
an increasing influent concentration. Furthermore, the number of OTUs with similar genes
was 166 in periods 1 and 2, 113 in periods 1 and 3, 135 in periods 1 and 4, respectively.
Thus, although the bacterial community was influenced by the increasing influent concen-
tration in periods 2 and 3, it could still be restored to the level of period 1 as the influent
concentration decreased to 10 mg L−1. In addition, the number of OTUs with similar genes
in periods 1 and 5 was 97, also confirming the more substantial influence of TCE on the
bacteria community. On the other hand, due to their self-regulation ability, the number of
OTUs in the bio-PRB increased in order to adapt to stress conditions.
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3.7. Conceptual Process of Benzene and Toluene Removal

Based on the above analysis and results, we proposed a conceptualization of the
benzene and toluene removal process in the bio-PRB (Figure 13). Generally, benzene and
toluene can be removed by adsorption (porcelain granules and biofilm) and biodegradation
(active biofilm and suspended microorganisms). In period 1, the pore channels and surface
area of the porcelain granules were blocked by the biofilm proliferation, resulting in a
decrease in their adsorption capacity. Thus, benzene and toluene were mainly removed
by biodegradation. In periods 2 and 3, with the inhibition caused by the high influent
concentration, the biodegradation of benzene and toluene decreased. However, the greater
pore and surface area exposure due to the detachment of the aging biofilm from the
porcelain granules likely increased their benzene and toluene adsorption capacity, and
so the apparent removal rate of the chemicals did not decrease as much as their actual
biodegradation rate (Table 2). As for period 4, although the microbial community and
biodegradation capacity were restored under non-stress conditions, the blockage of the
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pore channels and the coverage of the surface area caused by the biofilm proliferation
decreased the adsorption capacity of the porcelain granules. Thus, benzene and toluene
were mainly removed by biodegradation processes in period 4. In period 5, the addition of
TCE inhibited the microbial activity, with the biofilm detached from the porcelain granules,
resulting in greater surface area and pore channel exposure for the adsorption of benzene
and toluene. Thus, the inhibition of the biodegradation activity was probably offset by the
enhancement in the adsorption capacity to a certain degree, which meant that the apparent
removal rate did not decrease substantially. In addition, due to their stronger tolerance
to TCE stress compared with methanogenic bacteria, sulfate-reducing bacteria played a
primary role in the biodegradation of benzene and toluene in period 5.
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4. Conclusions

By using compound-specific isotope analysis in combination with high-throughput
sequencing analysis, we successfully evaluated BTEX biodegradation in a bio-PRB and the
stress response of the microbe community. A greater decline in the biodegradation rate of
benzene and toluene was observed compared with the apparent removal rate under stress
conditions. Both the addition of TCE and the increase in the influent concentration signif-
icantly decreased the biodegradation rate of benzene, while the toluene biodegradation
rate was only inhibited by TCE. Although the relative abundance of the dominant bacterial
community responsible for the biodegradation of benzene and toluene decreased as the
influent concentration increased, it was almost completely restored as the influent concen-
tration decreased. Compared with the increasing influent concentration, the addition of
TCE had a greater influence on the bacterial community. In the bio-PRB, Betaproteobacteria
was the dominant class for the biodegradation of benzene and toluene. After adding TCE,
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Aminicenantes became the most dominant phylum, as it could cometabolize TCE, benzene,
and toluene, while the other members of the bacterial community were seriously inhib-
ited. Due to its poor tolerance to stress conditions, the contribution of Acidovorax to BTEX
biodegradation was limited. The increase in Aminicenantes and the decrease in Acidovorax
suggested the existence of an antagonistic relationship between them.
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