
15IMVS Fokus Report 2013

Teaching Agile Software
Development at University Level1

Several recent surveys show that agile methodologies like Scrum, Extreme Programming and Kanban
have been successfully adopted by many companies for software development. However, the same sur-
veys show that only few of the agile practices are applied consequently and thoroughly. This is to a great
extent due to the lack of skilled personnel. In this paper we propose a more holistic approach for teaching
agile software development, in which the required agile practices and values are not only integrated theo-
retically into our courses but also practically applied. The proposed concept was realized in a new a course
at Zurich University of Applied Sciences during 2012. The evaluation shows very encouraging results.

Martin Kropp, Andreas Meier | martin.kropp@fhnw.ch

Recent surveys [1,2] show that agile methodol-
ogies in many respects deliver better outcomes
than plan-driven ones. As a result, agile software
development has been adopted by many IT compa-
nies and IT departments. In the Swiss Agile Study
(SAS), a survey conducted by the authors, these
findings have been confirmed [2]. More than half
of the participating companies are using an agile
methodology like Scrum [14] or XP [15] – Agile has
become mainstream!

Unfortunately, this also has a significant
impact on the agile team constitution. The ear-
ly adopters of agile approaches were all highly
mature and technically skilled experts in their
fields. They had internalized the agile philosophy,
were very productive and produced high quality
results. Today’s agile teams, however, are “nor-
mal” software teams, with architects, seniors and
juniors in one team, and many of them are not yet
familiar with the agile philosophy. Even though
those teams have improved in software develop-
ment to some extent, they are far less productive
than the early adopter expert teams. Survey re-
sults show that quality has partially even gone
down and overall costs increased. One reason for
this may be that many of the important agile prac-
tices are not applied as thoroughly as the agile pi-
oneers proposed [13].

In this paper we will analyze the situation on
the industry side in more detail to find out, which
skills are missing and make a proposal how ed-
ucation on university level can help to improve
this. We will suggest a holistic teaching approach,
which integrates the necessary agile engineering
and managements skills together with the core
agile values, into the education of agile software
development.

In the next two sections we give an overview
of related work to set our paper in context and

1 The original version of this paper has been published at
the 26th Conference on Software Engineering Education and
Training, May 19–21, 2013. CSEE&T '13, San Francisco, USA.

we analyze the reasons for the rather poor per-
formance of today’s agile teams and contrast this
with the current state of software development
education. Then we present the Agile Competence
Pyramid as a model for the required competences
for agile software development. In the rest of the
article we present the layout and the evaluation
of a new Software Engineering course, which was
held at the Zurich University of Applied Sciences
in the 5th semester of the undergraduate Comput-
er Science program. We conclude with an outlook
on further work.

Related Work
Though agile software development has been
around for more than a decade (even before the
famous Agile Manifesto [13]), teaching agile soft-
ware development has only drawn some attention
in educational and research conferences in the
last few years. A reason for this might be that ag-
ile development is not based on a green-field theo-
ry but has been developed from practice. In [3] the
authors discuss reasons why software engineer-
ing programs should teach agile software devel-
opment. They emphasize that software engineers
not only need technical skills but also social and
ethical ones, which are both corner stones of ag-
ile development. In [4] the authors emphasize that
theoretical lectures about agile development are
not enough, but that students have to apply agile
methods to really internalize them. The authors
present a case study with 80 students working on
a large project. There are several recent case study
papers and experience reports [5-8] in which the
authors report about their experiences teaching
agile software engineering courses.

Motivation
The recent Swiss Agile Study, in which 140 Swiss
IT companies and almost 200 IT professionals
participated, shows very clear results. IT com-

16 IMVS Fokus Report 2013

panies and IT professionals following the agile
methods are much more satisfied with their meth-
odologies than their plan-driven counterparts.
The study also shows very clearly, that major
goals of introducing agile development have been
reached: A significant improvement in the abili-
ty to manage changing priorities, improvement of
the development process in general and a much
faster time-to-market.

Table 1 summarizes the influence of agile soft-
ware development as given by the participating
agile IT companies. Though the survey shows
very promising results at first view, there are also
quite astonishing findings. It is reported that de-
velopment cost, software quality and software
maintainability have not improved as much as
expected. With respect to development cost and
software maintainability, 7%, respectively 12%
of the participants reported that these have even
got worse. This clearly contradicts the intention
of the authors of the agile manifesto, who want
to deliver high quality code that is easily main-
tainable.
One reason for this might lie in the fact that only
few of the agile practices are used consistent-
ly throughout the whole software development
process. While engineering practices like coding

standards, unit testing or automated builds are
used by two-third or more of the agile companies,
other necessary practices like continuous integ-
ration, refactoring, test-driven development are
used by only half the participants or even less. A
similar result is obtained with respect to the ma-
nagement practices: while two-third or more of
the participants use iteration planning, release
planning or user stories, only half or even less of
the participants use daily standups, task boards
or retrospectives.

The SAS shows, that there are too few software
engineers with the skills for agile development.
This suggests that we as teachers do not yet ed-
ucate the students with the required skills. This
assumption is backed by answers in Table 2. Al-
most 70% percent of the participating companies
think that undergraduates have too little knowl-
edge of agile; still the majority thinks this is true
for graduates.

Table 3 answers the questions, whether ag-
ile development should be an integral part of the
computer science curriculum. The majority of the
participants recommend that agile software de-
velopment should be an integral part of the com-
puter science curriculum. As educators, we have
to take the findings from the above tables serious-
ly and try to make sure that future graduates will
have sufficient knowledge of agile methodologies.

Evaluation of Effort and Learning Effect
Two major characteristics of agile software de-
velopment are its focus on working software over

Aspect

m
uc

h
w

or
se

w
or

se

un
ch

an
ge

d

im
pr

ov
ed

si
gn

ifi
ca

nt
ly

im

pr
ov

ed

do
n'

t k
no

w

Changing
priorities

1% 0% 9% 45% 44% 1%

Development
process

0% 2% 17% 58% 22% 1%

Time to
market

1% 2% 19% 53% 23% 2%

Alignm.btw. IT
and business

0% 1% 25% 46% 23% 6%

Project
visibility

0% 2% 25% 39% 28% 6%

Team morale 0% 4% 25% 42% 24% 5%

Requirements
management

0% 2% 29% 51% 13% 5%

Productivity 0% 2% 33% 47% 15% 4%

Risk mana-
gement

0% 5% 32% 42% 17% 4%

Software
quality

0% 2% 45% 35% 16% 2%

Software
maintainability

0% 7% 55% 23% 12% 3%

Development
cost

1% 12% 52% 22% 7% 6%

Engineering
discipline

0% 4% 42% 42% 9% 4%

Table 1: How has agile software development influenced the
following aspects?

Items

co
m

pl
et

el
y

di
sa

gr
ee

di
sa

gr
ee

ag
re

e

co
m

pl
et

el
y

ag
re

e

Computer Science
graduates (M.Sc.) have
sufficient knowledge of agile
methodologies

5% 53% 33% 9%

Computer Science
undergraduates (B.Sc.) have
sufficient knowledge of agile
methodologies

8% 60% 28% 4%

Table 2: Knowledge of graduates

Items

co
m

pl
et

el
y

di
sa

gr
ee

di
sa

gr
ee

ag
re

e

co
m

pl
et

el
y

ag
re

e

Agile development should
be an integral part of the
Computer Science curriculum

0% 5% 49% 46%

Agile should not be taught at
university, it is better learned
on the job

34% 48% 12% 7%

Table 3: Agile as part the computer science curriculum

17IMVS Fokus Report 2013

documentation and lightweight management.
Therefore, the authors wanted to know how much
effort computer science student spend on pro-
gramming, management and documentation in
the lectures and in their student projects, and
about the learning effect they got from these ac-
tivities. Table 4 and Table 5 show the results of
an evaluation the authors conducted from 103 stu-
dents at the two Universities of Applied Sciences
in Zurich and Northwestern Switzerland.

Table 4 shows that the students estimated
the effort spent for the different activities in the
lectures more or less appropriate. In the student
project, however, the majority of the students es-
timated the effort spent for documentation and
management too high or even far too high.

Table 5 shows that the students estimated the
learning effect of management activities signifi-
cantly higher in student projects than in lectures.
Interesting is the result for the documentation
activity. The learning effect for software project
documentation was seen to be much lower in the
student project than in lectures. Setting this in re-
lation to the results from Table 4 might suggest
that the wrong style of documentation was taught
in the student project.

The perceived results of this evaluation sup-
port the authors’ hypothesis, that too much time
is spent on agile management practices and, even
worse, on documentation. The strong focus on
documentation might come from the still existing
influence of plan-driven methodologies.

Pyramid of Agile Competences
Before developing a new agile software engineer-
ing course, it is important to analyze the needed

skills and competences for agile software devel-
opment. The required competences can be divided
into three major categories:

Mastering the technical skills or engineering
practices, builds the foundation for being able to
develop high quality software. These engineering
practices are especially defined by eXtreme Pro-
gramming and include best practices like unit
testing, clean coding, test-driven development,
collective code ownership and the like. Engineer-
ing practices are mostly competences that refer to
the single individual.

On the second level come the agile manage-
ment practices. They define how agile projects are
organized and run. Agile management practices
include iterative planning, short release cycles,
small releases, strong customer involvement and
highly interactive teams. Management practices
are typically team aspects, which require the ap-
propriate social competences.

On top of these competences come the agile
values, which are articulated in the agile manifes-
to and are based on characteristics like mutual re-
spect, openness, and courage. Figure 1 visualizes
the required competences in an Agile Competence
Pyramid.

The pyramid visualizes the decreasing number
of required skills from bottom to top. On the other
hand, it reflects the increasing difficulty to teach
these skills. Engineering practices can be taught
very well in the classroom through lecturers and
be learned by the individuals at their own pace.
Management competences are best taught through
student projects in teams, as our student evalua-
tion confirms. The most difficult competences to
teach are the values on top of the pyramid, since
they often require a change in the attitude of the
individual.

These different competence levels have to
be considered in an agile software engineering
course and have guided the authors in the design
of the new course.

Agile Software Engineering Course
The course was a typical 16-week semester class
in the last year of the undergraduate level (B.Sc.).
The students completed one Java programming

fa
r t

oo

hi
gh

to
o

hi
gh

ex
ac

tly

rig
ht

to
o

lit
tle

fa
r t

oo

lit
tle

Lecture Documentation 4% 25% 36% 23% 12%

 Management 2% 16% 45% 27% 11%

 Programming 4% 9% 50% 27% 10%

Project Documentation 32% 38% 27% 3% 1%

 Management 18% 31% 40% 10% 1%

 Programming 2% 8% 40% 34% 16%

Table 4: How do you estimate the effort for the different acti-
vities?

ve
ry

hi

gh

hi
gh

lo
w

ve
ry

lo

w

Lecture Documentation 0% 22% 47% 31%

 Management 2% 29% 51% 18%

 Programming 18% 45% 24% 14%

Project Documentation 8% 29% 51% 12%

 Management 10% 39% 38% 13%

 Programming 18% 42% 28% 12%

Table 5: How do you estimate the learning effect?

Agile

Values

Management
Practices

Engineering Practices

Figure 1: Pyramid of agile competences

18 IMVS Fokus Report 2013

project in an agile team of six to eight members
during the course of the semester. Per week there
were a two hours lecture with the whole class and
a two hours programming workshop with half the
class. 27 students were enrolled.

The scope of the course was equivalent to four
ECTS credit points (European Credit Transfer and
Accumulation System, one credit point is equiva-
lent to 30 hours of studying). The course consisted
of lectures (32 hours), workshops (32 hours), and
self-study including programming (56 hours).

The authors have successfully used a Scrum-
XP-hybrid for many years and therefore decided
to use it in this course as well. Why do Scrum and
XP work well together? Scrum focuses on manage-
ment practices while XP focuses mostly on engi-
neering practices – they address different areas
and complement each other.

Layout of the New Software Engineering Course
Table 6 shows the layout of the course. The course
was divided into two parts of equal length and
was designed with the insights from the previous
chapters in mind. The two parts reflect the com-
petence pyramid in Figure 1. Part one (weeks 1 to
7) lays the focus on building a strong foundation,
i.e. the engineering practices. Part two (weeks 8 to
14) builds the second and third layer of the pyra-
mid, i.e. the management practices and values. All
practices were actively applied in a student proj-
ect during part two.

For this course, the following learning target
was defined using Bloom’s taxonomy [19]: “After
successfully attending this course, students have
the necessary skills to develop software in an ag-
ile team. They can apply the most important agile
engineering- and management practices and un-
derstand the importance of the agile values.”

Part One: Applying Engineering Practices
• eXtreme Programming (XP): In the first two

lectures the students were given an introduc-
tion to XP. The XP practices and the Agile Man-
ifesto were discussed. In the workshops, each
student completed a coding assessment and
was given feedback.

• Version Control: As a preparation for Continu-
ous Integration, the concept of a version con-
trol system (VCS) was introduced. Subversion
(SVN) was used as repository in the workshop.
Some students suggested that GIT should rath-
er be used than Subversion.

• Project Automation: Ant (Another neat tool)
build scripts were introduced in the lecture
and practiced in the workshops. Some students
suggested using Maven instead of Ant build
scripts.

• Continuous Integration (CI): With version con-
trol and project automation in place, the con-

cept and benefits of CI were discussed. In the
workshop, a CI-server Jenkins was configured.

• Clean Code and Code Smells: Clean code has
had a marvelous effect on the quality and read-
ability of student’s code [9,10]. The students
read most of the Clean Code book as part of the
self-study.

• Unit Testing and Mock Objects: The concept of
automatic unit testing was introduced. In the
workshop, exercises with JUnit and EasyMock
were carried out. These JUnit tests were added
to the CI-server.

• Refactoring: Good understanding of automat-
ic unit testing and refactoring are the basis of
Test-Driven Design. A catalog of refactorings
was discussed and practiced in the workshop.

• Introduction to Test-Driven Design (TDD): “TDD
is hard. It takes a while for a programmer to
get it.“ [17]. TDD is especially difficult to teach
in the classroom. For that reason, the students
were only given an introduction to TDD. In the
workshop, the students worked through some
of the craftsman articles [18]. One student gave

Week Lecture Workshop

1 eXtreme Programming

Agile Manifesto

Installation IDE & Plug-Ins

Coding Assessment 1

2 eXtreme Programming
Version Control

Coding Assessment 2
Version Control Syst. (SVN)

3 eXtreme Programming
Project Automation

Build Scripts (Ant)

4 Continuous Integration CI (Jenkins Build Server)

5 Unit Testing JUnit

6 Unit Testing / Mock
Objects

Clean Code/ Code Smells

JUnit

EasyMock

7 Refactoring Refactoring

8 Introduction to Test-Driven

Design / Scrum

TDD, The Craftsman articles

9 Scrum Agile Game Development
(Sprint 1)

10 Scrum Agile Game Development
(Sprint 2)

11 Agile Estimating and
Planning

Planning Poker

Agile Game Development
(Sprint 3)

Agile

12 Metrics Agile Teams Agile Game Development
(Sprint 4)

Metrics (EMMA)

13 User Stories
Agile Principles

Agile Game Development
(Sprint 5)

14 Demonstration of
computer games

Agile Game Development
(Sprint 6)

15/16 Preparation for
examination: No lecture

Preparation for examination:
No workshop

Table 6: Overview of semester plan

19IMVS Fokus Report 2013

the following feedback: “Reading the crafts-
man articles really helped me to understand
how TDD works.”

Part Two: Applying Management Practices
• Student project: While the students were wor-

king individually or in small groups in part
one, part two was different - the agile game
was played in the classroom. In order to real-
ly understand how Scrum works, the students
must be members of a “real” Scrum team. Since
this is not possible in the classroom, the Sc-
rum team was simulated in the student pro-
ject. The goal of the student project was to
develop a 2D computer game applying all nee-
ded engineering practices. The students wor-
ked in four Scrum teams of six to eight. Each
team was free to decide what kind of computer
game they wanted to develop. One student was
voted ScrumMaster; the lecturer was the pro-
duct owner. The teams completed six one-week
sprints. Every week during the workshops,
each team did the sprint planning, sprint re-
view and retrospective coached by the lectu-
rer. During self-study, the students developed
the actual game. In the last week, all the teams
could demonstrate a working game. In order to
get a good start, the students were given an in-
troduction to game development with Slick2D
[20].

• Scrum was introduced in the lecture. Problems
and questions, which had arisen in the Scrum
teams where addressed in the next lecture and
discussed in the plenum.

• Pair Programming was introduced ad hoc. The
students were asked to pair with peers while
developing the game.

• Planning Poker: Agile estimating and plan-
ning was introduced during the lecture and

practiced in the Scrum teams [11]. User stories
were estimated by playing planning poker [12].

• Task board: The functioning of the task board
and burndown charts were discussed. For this
course, an electronic task board was used.

Teaching Agile Values
Agile values are difficult to teach [13]. The ap-
proach in this course was to show the students,
that these values are not just something the cre-
ators of the Agile Manifesto intended to give lip
service to and then forget. They are working val-
ues. The concepts of agile values were introduced
in the first part. Usage of the values was propa-
gated in the second iteration through means like
retrospectives, common code ownership or pair
programming. Many discussions during the lec-
tures and workshops tried to transport that mes-
sage.

Student Feedback
In the last week of the semester, 24 students filled
in an evaluation form (the items and answers are
translated from German). An excerpt of the en-
couraging results is shown in Table 7.

In the planning phase there was some uncer-
tainty as to whether the student project would
falter due to group size and commitment of the in-
dividual member of the scrum teams. These fears
were ungrounded. On the contrary, the students
were exceptionally committed and delivered top
quality computer games. The students were asked
what they liked most about the course. In Table
9 are some statements, translated from German.
The students were also asked what they disliked
about the course. Nine students did not have any
dislikes. Most of the students disliked the amount
of work during the student project in the second

Items excel-
lent

good bad very
bad

The content of this course is... 12 11 0 0

This course was divided
into engineering- and
management practices and
agile values. How would you
judge this concept?

12 11 0 0

How did the agile values
come across in the lectures
and workshops?

1 19 1 0

In the student project, you
worked in a Scrum team
of 6 to 8 fellow students.
How would you judge this
concept?

9 11 4 0

How would you judge the
workshops in part one?

1 20 1 0

How would you judge the
workshops in part two?

6 14 3 0

Table 7: Course evaluation

Items Yes No

Would you recommend this course to your
fellow students?

23 1

Did you enjoy this course? 20 0

Table 8: How did you like the course?

“… the development of the computer game in a Scrum team”.

“… that the material in the course was not only covered
theoretically but I also had the opportunity to apply and deepen it
in the workshops”.

“… the practical relevance”.

“… that the topics covered were interesting and important. I
had the opportunity to practice the newly learned in the student
project. That was great!”

Table 9: What did you like best about the course?

20 IMVS Fokus Report 2013

part. Many students suggested that the student
project should be longer (see Table 10).

Evaluation and Suggestions
The quality of the students’ work was measured
twofold. On the one hand, the student project
presentations, which included a demonstration
of their computer games, were evaluated. On the
other hand, the students had to pass a formal oral
exam. The average grade was a 5.1 on a scale from
1 (very poor) to 6 (excellent). This was higher than
expected. A systematic classification of the out-
come quality remains to be done.

The experience from this course and input
from students lead to the following suggestions:

Group dynamics are very important and there-
fore special attention should be paid to the way
the Scrum teams are put together. The students
should have access to a room, where they can meet
for standups and have a wall for the task board.
For this course, an electronic task board was
used. Unfortunately, because of poor performance
it did not meet our expectations.

Working only a couple of hours every week on
the student project is not ideal. Many students
suggested an intensive week instead. During this
week, the students would only work on the project
in the Scrum team. One semester is rather short
for the material covered in this course. If the stu-
dents had been familiar with engineering practic-
es like unit testing, refactoring, build automation
or clean code prior to the course, this time could
have been used for test-driven development or ad-
ditional iterations.

Further Work
Advanced practices like Behavior Driven Devel-
opment (BDD) or Acceptance Test Driven Devel-
opment (ATDD) were not covered in this course.
Because of limited time, only an introduction to
Test-Driven Development could be taught. Testing
is a very important topic and should therefore be
deepened in future courses. The same is true for
requirements engineering, which was only partly
covered in this course.

It is the authors’ opinion that agile software
development cannot be taught in isolated Software
Engineering courses. A challenge will be the inte-
gration of agile development in other courses like
programming, object-oriented analysis and de-
sign, algorithms and data structures, etc. Special
attention needs to be paid to the fact, that agile
software development does not work well together
with big-design up front (BDUF) approaches. This
could mean a shift from BDUF to emergent design
as advocates of Scrum propose it. That said, fur-
ther work is necessary on how agile development
can successfully be integrated into the computer
science curriculum.

References
[1] Version One. State of Agile Development Survey results.

http://www.versionone.com/state_of_agile_development_

survey/11/, 20.10.2012

[2] Martin Kropp, Andreas Meier, Swiss Agile Study - Einsatz

und Nutzen von Agilen Methoden in der Schweiz.

www.swissagilestudy.ch, 20.1.2013.

[3] Orit Hazzan, Yael Dubinsky: Why Software Engineering

Programs Should Teach Agile Software Development.

ACM SIGSOFT Software Engineering Notes 2007, Vol. 32/2.

[4] Bernd Bruegge et al: Agile Principles in Academic Edu-

cation: A Case Study. 6th International Conference on

Information Technology: New Generations 2009. ITNG ‘09.

[5] Vladan Devedzic and Sasa R. Milenkovic. Teaching Agile

Software Development: A Case Study, IEEE transactions

on Education Vol. 24. No 2. 2011.

[6] Andreas Schroeder et al. Teaching Agile Software Devel-

opment through Lab Courses. IEEE Global Engineering

Education Conference 2012. EDUCON ’12.

[7] Viljan Mahnic. A Capstone Course on Agile Software

Development Using Scrum. IEEE TRANSACTIONS ON

EDUCATION, VOL. 55, NO. 1, 2012

[8] Rico, D.F., Sayani, H.H. Use of Agile Methods in Software

Engineering Education. Agile Conference, 2009. AGILE '09.

[9] Robert C. Martin, Clean Code: A Handbook of Agile Soft-

ware Craftsmanship, 2009, ISBN 0-13-235088-2

[10] Robert C. Martin, The Clean Coder: A Code of Conduct for

Professional Programmers, Prentice Hall, 2011,

ISBN 0-13-708107-3

[11] Mike Cohn, Agile Estimating and Planning, 2006, ISBN

0-13-147941-5

[12] Mike Cohn, User Stories Applied, For Agile Software De-

velopment, 2004, ISBN 0-321-20568-5

[13] Agile Manifesto. http://agilemanifesto.org/, 20.1.2013.

[14] Ken Schwaber, Mike Beedle. Agile Software Development

with Scrum, 2001, ISBN 0-13-207489-3

[15] Kent Beck, Extreme Programming Explained: Embrace

Change. Addison-Wesley, 2004 ISBN 0-321-27865-8

[16] Kent Beck, Test-Driven Development: By Example. Addi-

son-Wesley, 2003, ISBN 0-321-14653-0

[17] Henrik Kniberg, Scrum and XP from the Trenches.

How we do Scrum. An agile war story, 2007,

ISBN: 978-1-4303-2264-1

[18] Robert C. Martin, The Craftsman, http://www.objectmen-

tor.com/resources/publishedArticles.html, 20.1.2013.

[19] Benjamin S. Bloom, David R. Krathwohl (1956). Taxonomy

of Educational Objectives: The Classification of Educatio-

nal Goals, by a committee of college and university exami-

ners. Handbook I: Cognitive Domain, New York, Longmans,

Green.

[20] Slick2D - Open source 2D java game library:

http://www.slick2d.org, 22.01.2013

“.… too much work during the second part”.

“… too little time for developing the computer game”.

“… agile was praised too much. Negative aspects of agile were
not or too little mentioned”.

“… the electronic task board”.

“… too little time for the student project, because of
simultaneous projects in other courses”.

Table 10: What did you dislike about the course?

