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A B S T R A C T

Learning videos are a promising opportunity to enable remote learning and enjoy a worldwide
increasing popularity. However, due to the remote setting it is di�cult to examine students’
learning behavior. Previous research examined learners’ video interaction by focusing on fre-
quencies of user interaction (i.e. clicks). However, we assume that investigating meaningful
behavior sequences instead of click frequencies can lead to a better understanding of learning
behavior. The main goal of this study was to develop a new method to gain deeper insights
into learners’ behavior based on their digital footprints (i.e. log files) when they learned with
an enhanced video-based environment. Yet, measuring a latent variable such as learning be-
havior is particularly tricky and time consuming. Thus, we developed an application (Logible)
based on our method to automatically analyze 92 log files from one of our prior studies. We
contrasted four experimental conditions di�ering in learning task and learning setting. Results
revealed that the learning task (i.e. using annotations or hyperlinks) had a significant influence
on learning behavior. Yet, no significant influence caused by the learning setting (i.e. learning
individually or collaboratively) was found. Furthermore, we investigated if and how learning
strategies from successful and less successful learners di�er. Results showed that successful
learners more thoroughly planed where to to place annotations or hyperlinks. We conclude that
applying Logible led to original findings and therefore we encourage fellow researchers in the
field of CSCL to consider working with Logible whenever focusing on broader behavior instead
of raw clickstream data.

1. Introduction
1.1. Background video learning

Recently distance learning methods became more relevant due to the worldwide spread of the coronavirus (COVID-
19) and the associated restrictions in public life, including the closing of schools and universities (UNESCO, 2020).
Educational videos are according to Tiernan (2015) a good opportunity to tackle the challenges of distance education,
since they can be provided asynchronously and remotely and are therefore able to support learning and conceptual
understanding. Educational videos as part of teaching in educational institutions are, however, no new phenomenon
but rather look back on a long tradition (Poquet et al., 2018). Through the use of basic video control tools, such as
play, pause and rewind, learners can actively interact with the learning material. Thereby learners are in control of the
learning material and are able to learn at their own pace, which minimizes the risk of cognitive overload (Cattaneo et al.,
2015) and fosters knowledge acquisition (Zahn et al., 2004). While engaging with the learning material learners evolve
successful strategic learning interactions (Schwan & Riempp, 2004). In addition to basic video control tools, newly
designed enhanced video-based environments allow individual or collaborative learners to engage even more with the
learning material by annotating, commenting, discussing and editing interactive videos (Franzoni et al., 2013; Yousef
et al., 2015). Previous research provided evidence suggesting that note-taking in video learning is superior to working
with basic control tools regarding learning success (Delen et al., 2014). Further evidence by Zahn et al. (2010) and
Zahn et al. (2012) suggests that designing a hypervideo structure is successful to learn complex history topics. Through
active participation in constructing information, learners can actively transform existing video representations into their
own enriched information structures (Schwartz & Hartman, 2007; Yousef et al., 2015). Therefore, learners actively
generate meaning (Wittrock, 1992) by designing their own learning content (e.g. Kafai & Resnick, 1996; Papert, 1994).
Moreover, enhanced video-based environments are able to foster collaborative learning as they allow learners to jointly
engage with content ideas and scientific practices (Sinha et al., 2015)
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1.2. Investigating learning behavior
Since learning videos became a core component of many pedagogical approaches and with recent advances in

video streaming technologies, the field of learning analytics grew more relevant (Mirriahi & Vigentini, 2017). Learn-
ers’ digital footprints (log files) can be mined and analyzed to investigate and measure learning behavior and to better
understand how they learned and engaged with educational videos (Mirriahi & Vigentini, 2017). Such log files contain
chronological arrays of learners’ interactions and are usually displayed in tabular representation. In their pure form log
files are rather di�cult to interpret and impede to gain quick and intuitive insights into learners’ behavior. From such
tabular representation, however, learners’ clickstream logs can be extracted. For instance, a clickstream log can be
displayed as the following string of interactions: play/pause/rewind, indicating that a learner first started to watch the
video (logged interaction: play), then paused it (logged interaction: pause) and finally rewound it (logged interaction:
rewind). The main focus in previous research has been on investigating interaction frequencies at the granular click-
stream level, i.e. by summarizing frequencies of single interactions, such as play, pause or rewind (Wang et al., 2013;
Shi et al., 2015). However, Sinha et al. (2014) warned that focusing only on frequencies of single interactions im-
pedes tracing results back to the actual learning behavior, due to the loss of hidden information from behavior patterns.
Sinha et al. (2014) therefore applied a di�erent approach and encoded meaningful sequences from clickstream logs
by grouping single interactions (i.e. clicks). As a result, they gained deeper insights into students’ learning behavior
in Massive Open Online Courses (MOOCs). Additionally and according to Sinha et al. (2014), encoding meaningful
sequences instead of raw clicks on a granular level can help to reduce the noise in the data. However, such approaches
using sequences to investigate learning behavior in video learning are still rare and require a huge e�ort to detect and
elaborate meaningful sequences from raw clickstream logs. Hence, only a few studies examined learners’ interaction
behavior with behavior sequence analysis so far (Mubarak et al., 2020).

1.3. Behavior sequence analysis
Logged interaction data provided by the enhanced video-based environment can be considered and treated as se-

quential data since their true character reveals itself unfolded in time. Similarly to recipes, movies, and music, which
can be regarded as ordered chains of objects whose identity is a product of both its order and its content (List, 2014).
When behavior of any kind is subject of interest, e.g. by investigating the discussion of couples, the fighting of monkeys
or the playing of children (Bakeman & Gottman, 1997) the sequentially of the data should be taken into considera-
tion. According to Bakeman & Gottman (1997), it is often recommended to record observation data in a way that
preserves sequential information. Thereby researcher make use of and illuminate the sequential nature of the observed
data. Behavior sequence analysis as a methodological approach provides the right theoretical framework to analyze
sequential behavioral data (Ritschard & Studer, 2018) and is helpful to comprehend an overall picture of the data.
Thereby, common or atypical trajectories can be identified and trajectory patterns among groups can be compared.
Sequence analysis was originally introduced in computer science in the 1960s. Few years later it became popular in
molecular biology for studying DNA and RNA sequences (Ritschard & Studer, 2018). In the 1980s the sociologist
Andrew Abbott transferred sequence analysis into the field of the social sciences since a wide variety of work in social
science concerns sequences of events or phenomena (Abbott, 1995). The study of event sequences has also a long
research history in psychology, economics, archaeology (Abbott, 1995) as well as voice recognition (Schlich, 2004)
and historical linguistics (List, 2014).

An illustrative example of the importance of analyzing behavior sequentially is given by Ivanouw (2007), in which
the relevance of sequential data is explained through a fictitious Tolman-like learning experiment. Thereby two rats
have to choose between two doors - left or right - in order to obtain food that might be behind one of those doors.
Ivanouw (2007) assumes that both rats do 21 continuous trails and the choices of the first rat are L R R L R L R R
R L R R R L R L R L R R R and the choices of the second rat are L R L L R L R R R R R R L L L R R R R R
R. The question arises if the two rats behave similarly or not? Both rats chose 7 times the left door (33.3%) and 14
times the right door (66.6%). Looking only at the frequencies of their choices one might be tempted to conclude that
both rats would have behaved the same way. Although, when having a closer look, patterns can be discovered, e.g.
the first rat always chose the right door after the left door, which is not the case for the second rat. The second rat
chose the left door multiple times in a row. (Ivanouw, 2007). A further example of how sequential behavior can be
examined is given by Berchtold & Sackett (2002), who analyzed the behavior of 15 nursery raised infant pigtailed
macaque monkeys (Macaca nemestrina) during playroom socialization sessions. Thereby the researchers observed
and coded four di�erent behaviors: passive, explore, fear/disturbance and play. Their goal was to find a model clearly
identifying di�erences in patterns of successive behaviors between monkeys. However, Berchtold & Sackett (2002) did
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not consider the time spent on each behavior, therefore each observation could have had a di�erent duration. First, the
researchers created a contingency table for each individual monkey. Contingency tables are considered as a basic tool
for the presentation of transitional data represented as an array of the relation between two or more categorical variables.
Such tables contain as many columns and rows as there are dependent variables. For instance, the four focal behaviors
in this study can be represented in a 4 x 4 matrix, where the numbers in each cell represent the sequential occurrences
of each pair of events. Based on these observed absolute values, transition probabilities can be calculated. According
to Berchtold & Sackett (2002), this is done by dividing each number of the contingency table by the corresponding
row sum. As a result, each row cell represents the given probability of an intersection and each row sums up to 1.00.
In psychological literature on behavior interaction, however, contingency tables are rather rare. Usually, stochastic
frameworks such as transition probability matrices or Markovian models are commonly used (Abbott, 1995). The latter
was developed by the Russian mathematician A. A. Markov (1856-1922) for analyzing sequences with well-defined
dependencies. According to Ivanouw (2007), however, many statistical methods require independence between the
data, i.e. the observed events. Nevertheless, real live behavior is seldom independent since it is usually influenced by
numerous cause e�ects and should therefore be analyzed sequentially. Markovian models are used to systematize and
simplify such complex links. There are di�erent orders of Markov models. A first-order Markov model for example
assumes that every event is influenced only by the immediately preceding event (Ivanouw, 2007). In other words,
this means that at a given point in time the next event would be influenced only by the present event, but it does not
matter what determined the present event. Moreover, the second-order model assumes that a given event is influenced
by the two preceding events. Markov models are usually represented as visualizations with knots and edges, whereas
knots represent the events and edges the transition probabilities. The thickness of the edges indicates the level of the
transitional probabilities (high transitional probabilities are represented as thick edges, low transitional probabilities are
represented as thin edges). No edge between two knots indicates no linkage and therefore zero transition probability
between those two events. Markov Chain Visualization captures the natural complexity of behavioral data. Such
visualization can be either analyzed descriptively as well as by applying a variety of quantitative measurements from
algorithms (e.g. Optimal Matching), to simple or linear algebra (Abbott & Tsay, 2000) or qualitative measurements,
such as visual analytics (Rack et al., 2019; Kerren & Schreiber, 2012). According to Rack et al. (2019), visual analytics
supports researchers using an exploratory framework to analyze hierarchical or sequential data.

2. Research Question
According to Sinha et al. (2014), we assume that log files hide an immense potential if the hidden information

can be easily comprehended and that we can gain a deeper understanding of learning behavior from these log files by
analyzing meaningful sequences instead of raw clickstream logs. Thus, the main goal of this study was to develop
a new method to gain deeper insights into learners’ behavior based on log files automatically collected while they
learned with an enhanced video-based environment. However, measuring a latent variable such as learning behavior
is particularly tricky and time-consuming. Furthermore, the authors of this study were not aware of any available tool
that could have been applied for that purpose. As a result, a special focus lied on the development of a time-saving and
adjustable application that enables researchers to automatically detect meaningful behavior sequences solely based on
log files. We developed our method close to empirical data resulting from a data set of students who learned a complex
science topic with an interactive video (see section below for study details) either individually or in groups of two (i.e.
learning setting conditions) and either used hyperlinks or annotations for self-written summaries (i.e. learning task
conditions). The present study was guided by the following two exploratory research questions:

RQ1: Can di�erences in learning behavior be made visible by developing a new method using log files?
RQ2: Can learning strategies from successful and less successful learners be discovered?

We hypothesized that (H1a) the learning behavior of individual and collaborative learners di�er and these dif-
ferences can be visualized by the newly developed method. Furthermore, we hypothesized that (H1b) the learning
behavior of learners between the annotation and hyperlink conditions di�er and these di�erences can also be visual-
ized by the method. Hence, the learning setting and the learning task served as independent variables and learning
behavior as the dependent variable.

In the following sections, we first give a description of the data set before we describe our newly developed method
for detecting meaningful behavior sequences in detail. Then, we introduce our executive application (Logible) before
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we present findings for answering the research questions followed by a discussion and conclusion.

3. Material and methods
3.1. Description of the data set

In order to develop the method, we used a subsample from a data set consisting of 209 Swiss university students
(75% female, M = 24.30 years, SD = 6.70). The participants were asked to learn a complex science topic (i.e. synaptic
plasticity) at their own pace using an enhanced video-based environment provided by the learning application Frame-
Trail1. All participants received the same video and the same additional predefined learning material (in form of
informative texts). The participants were randomly assigned to the experimental conditions of a 3 x 2 study plan.
Participants could either add annotations in form of self-written summaries (annotation condition) or add hyperlinks
containing the predefined additional learning material (hyperlink condition) directly at appropriate places into the
video and change the display time on the video timeline. A third group (i.e. considerate-watching condition) func-
tioned as the control condition and received the same video as well as the additional information but was not able to
add annotations or hyperlinks. Moreover, participants learned either individually or in a group of two (dyad) using one
shared desktop computer. In order to answer the research questions of this contribution the participants of the control
condition were excluded. Therefore, only a subsample of the data from participants learning in the two enhanced con-
ditions (annotation and hyperlink) were used to develop the method, since we were interested in investigating learning
behavior in enhanced video-based environments and built behavior sequences on these conditions. Due to technical
issues, few log files went missing or were damaged. Thus, the data set for the present study contained 92 log files
from 134 participants (75.4% female, M = 24.18 years, SD = 6.78) provided by FrameTrail. To find di�erences in the
learning setting and learning task on learning behavior we contrasted the four experimental conditions (see Table 1).
Note that only one data set for each collaborative group was available.

Table 1
Sampling and study design RQ1 (number of participants).

Learning setting
Individual Collaborative Total

Learning task Annotation 25 (25) 20 (40) 45 (65)
Hyperlink 25 (25) 22 (44) 47 (69)
Total 50 (50) 42 (84) 92 (134)

Before and after each video learning intervention the participants were asked to test their knowledge on synaptic
plasticity by answering a short 5 question questionnaire. Concerning RQ2, four data sets for each experimental condi-
tion were selected and di�erentiated between the success of their knowledge gain. We classified learners as successful
when they achieved at least a two points better result in the posttest compared to the pretest. Accordingly, we classified
less successful learners when they achieved a less than two point better result in their posttest. Note that learners in the
collaborative conditions (learning dyads) answered pretest and posttest separately. Therefore, mean scores from both
learners were calculated. As a result, 16 data sets were thereby selected by di�erentiating between 8 successful and 8
less successful learners (see Table 2).

Table 2
Sampling and study design RQ2 (� = difference between pretest and posttest).

Annotation Hyperlink
Individual Collaborative Individual Collaborative

Successful IA39 (� = 4) CA19 (� = 2.5) IH62 (� = 4) CH35 (� = 3.5)
IA70 (� = 4) CA44 (� = 4) IH63 (� = 4) CH66 (� = 4.5)

Less Successful IA06 (� = -1) CA22 (� = 0) IH17 (� = -1) CH40 (� = -0.5)
IA08 (� = 1) CA57 (� = 1) IH44 (� = 0) CH61 (� = 0.5)

1see https://frametrail.org
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3.2. Introducing a new method for detecting behavior sequences
In the following section, we introduce the step-by-step process of developing our method for sequence detection,

which was inspired by Sinha et al. (2014). While participants learned with FrameTrail, the system automatically logged
the following seven user interactions (in the following referred as actions): VideoPlay, VideoPause, VideoJumpBack-
ward, VideoJumpForward, AnnotationAdd, AnnotationChangeTime, AnnotationChangeText. Note that AnnotationAdd
and AnnotationChangeTime were logged either when an annotation or a hyperlink was added into the video or changed
in its display time. The action AnnotationChangeText, however, only referred to the annotation condition, as only par-
ticipants in the annotation condition were able to write and change text elements. Like Berchtold & Sackett (2002)
we did not consider the time spent on each behavior, therefore each observation could have had a di�erent duration.
In the first step, deduced from the initially provided log files, all actions were arranged horizontally as action-strings
(by using Microsoft Excel). In the second step, the action-strings from a randomly selected subsample (n = 6) of the
data set (N = 92) were analyzed more deeply by two experts. The most frequently occurred action-strings performed
by learners in conjunction with each other were manually and exploratively grouped. Using these detected groups of
actions many semantically meaningful behavior sequences could be identified. The idea behind this step was rather
to reduce the noise in the data by grouping actions into meaningful sequences than to investigate arrays of actions or
atypical trajectories from them as stated in the previous chapter. The chronological order of actions in these groups,
however, could di�er but still manifest in the same behavior sequence. This is illustrated by the following examples of
three slightly di�erent action-strings:

1. ... / VideoPlay / VideoPause / VideoJumpBackward / AnnotationAdd / ...
2. ... / VideoPlay / VideoPause / VideoJumpBackward / AnnotationAdd / ...
3. .../ VideoJumpBackward / VideoPlay / VideoPause / AnnotationAdd / ...

The three action-strings are similar in the way that (1) they consist of about the same amount of actions, (2) all
contain the same kind of actions and (3) AnnotationAdd is set as the last action of the sequence. To intersubjectively
validate the exploratory detected sequences we compared and revised them in many iterations. In the third step, the
exploratory initial process merged into a rule-based procedure that served as a guideline to identify possible behavior
sequences in fuzzy action-strings. Every behavior sequence was given an identification number and a meaningful label
as well as an informative description. Furthermore, the minimum and maximum amount of allowed actions as well
as the mandatory and forbidden actions were defined. Additionally, the permitted frequency of action appearance and
mandatory first and last action of the sequence were defined as well. Table 3 illustrates a concrete example for behavior
sequence 1.1. Search position and add annotation.

Table 3
Concrete example for the rule-based procedure.

Behavior sequences label 1.1 Search position and add annotation
Behavior sequences description This sequence represents an intentional search for a location in

the video to add an annotation or hyperlink
Min./Max. amount of actions 3 to 5
Mandatory actions VideoJumpBackward or VideoJumpforward, AnnotationAdd
Actions allowed only once AnnotationAdd
Forbidden actions AnnotationChangeText, AnnotationChangeTime
Mandatory first action VideoPlay, VideoPause, VideoJumpBackward, VideoJumpFor-

ward
Mandatory last action AnnotationAdd

This rule-based procedure was especially important considering the following automatically computer-supported
sequences detection (see below). In a fourth step, this rule-based procedure was applied on new randomly included
action-strings from the data set and thereby iteratively improved the method. This process finally resulted in 17 delim-
itable behavior sequences (see Figure 1).

Having closer look at the 17 behavior sequences in Figure 1, it unravels that there are several overlaps between the
sequences. For instance, the behavior sequence 1.4 Search position and create annotation and adjust time includes -
by its definition - also the behavior sequence 1.3. Search position and create annotation (see Figure 1). In other words,
the behavior sequences can be considered consecutive.
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Figure 1: Overview of behavior patterns and behavior sequences with prioritization.

In a fifth step, by implementing a priority system we defined which behavior sequence should be selected whenever
there was more than one possibility. Therefore, we considered the factors priority, length (of sequence) and homo-
geneity - and assigned them di�erent weighting. The priority factor had the highest weighting as it considers di�erent
levels of interactivity between the sequences to fulfill the learning task. For instance, the behavior sequence 5.1 Re-
watch had a very low priority, as it solely contains VideoPlay and VideoPause and VideoJumpBackward, indicating a
learners’ intention to watch a certain part of the learning video again. The behavior sequence 1.4 Search position and
create annotation and adjust time, on the contrary, had the overall highest priority since it not only contains VideoPlay
or VideoPause, and VideoJumpBackward but also contains AnnotationAdd, AnnotationChangeTime and Annotation-
ChangeText. This behavior sequence indicates that a learner actively navigates the video - similarly to the rewatch
sequence - but additionally adds an annotation, then writes a summary and finally changes the display time of the
annotation in the video timeline. Hence, this sequence involves a higher interactivity level than the rewatch sequence
and thus should get selected by an automated system rather than the 5.1 Rewatch sequence. Moreover, in order to re-
duce the noise in the action-strings caused by not assigned single actions, longer sequences were preferred over shorter
sequences (= length). For sequences with similar priority and length scores, we applied the heterogeneity factor, to
prefer sequences with a higher number of di�erent actions. Note that in the process of transferring our newly developed
method to a usable tool (see section below) we calculated normalized scores for each of the factors and assigned an
overall rating for the given list of behavior sequences, which also took into account the respective weight of each factor
(priority: 2.2, length: 1, heterogeneity: 0.4).

In a final step, the 17 behavior sequences were further subsumed into five superordinate behavior patterns (see left
column in Figure 1). Each behavior pattern functions as a latent variable di�cult to measure directly from data. We
contrasted the five behavior patterns between their intentional level (search vs. find) and their level of content creation
(add vs. modify). More precisely, the behavior patterns 1. Search and add, 2. Search and modify and 5. Search
and navigate contained at least one search element, i.e. either action VideoJumpForward or VideoJumpBackward,
indicating that learners actively searched the video (by jumping forward or backward) for information. In contrast,
the behavior patterns 3. Find and add and 4. Find and modify evolved “on-the-way”, indicating that learners found
a place in the video for further interactions. Moreover, the behavior patterns 1. Search and add and 3. Find and
add comprised the action AddAnnotation, indicating that learners searched or found an appropriate place in the video
to add an annotation or hyperlink. Contrary to the behavior patterns 2. Search and modify and 4. Find and modify,
where learners searched or found a place in the video that helped them to modify already existing annotations or
hyperlinks (by changing the display time of the annotation/hyperlink or by revising the self-written text). Behavior
patterns play an important role in further comparisons and analyses since they show a higher ability to contrast whereas
behavior sequences di�er only marginally from each other due to their consecutive character. Furthermore, learners
in the hyperlink condition received only predefined additional learning material they could not contribute self-written
summaries and as a result the action AnnotationChangeText could not occur. Thus, learners in the hyperlink condition
could only perform nine out of the 17 behavior sequences (see Figure 1). By identifying meaningful behavior sequences
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and behavior patterns we expect to reduce the noise in the data and to analyze their order in the manner of behavior
sequence analysis.

3.3. Transferring the method into Logible
As mentioned earlier detecting behavior sequences out of raw clickstream data is rather di�cult and time-consuming.

Therefore, we developed an application called Logible (making log files legible) to automatically detect and visual-
ize meaningful behavior sequences from the entire data set based on our methodological approach. The log files in
their tabular format (usually Microsoft Excel) can easily be added into Logible by dragging and dropping them on the
home screen. Logible quickly analyzes the data and detects all presumed possible behavior sequences according to the
rule-based sequence detection and visualizes them color-coded above each individual action-string (see bottom line in
Figure 2). According to the rule-based prioritization, Logible selects and marks the most valuable behavior sequence
with a bold black frame. This visualized representation provides a first impression of students’ learning behavior.
We further implemented a function that calculates the number of actions assigned to the behavior sequences, which
highlights the sensitivity of Logible.

Figure 2: Visualized sequence detection in Logible.

In order to directly investigate and compare learning behavior and learning strategies, we equipped Logible with
three additional functionalities: (1) Frequency of Occurrence, (2) Transition Probability Matrices and (3) Markov
Chain Visualizations. The idea behind these functions was to directly compare relevant subsamples in Logible without
using any other software. Thereby the Graphic User Interface (GUI) is divided vertically and shows on either side two
adjustable tables (see Figure 3). Above each table, there are two drop-down menus (i.e. a format selector and a sample
selector) for configuring each table separately. The format selector o�ers three possible output levels. On the most
granular level actions can be compared. Furthermore, and on a higher level the 17 meaningful behavior sequences
or the five behavior patterns can be chosen for comparison. With the second drop-down menu the sample one wants
to analyze in-depth can be selected. The sample selector o�ers many di�erent options to choose from. One specific
single data set or aggregated data sets of one of the four experimental groups or the whole data set can be chosen
for further comparison. Contrasting two experimental groups using the Frequency of Occurrence of the five behavior
patterns enabled first insights into students learning behavior. Thereby, possible di�erences in absolute and relative
frequencies of occurrence could be discovered.

Additionally and with RQ2 in mind, we equipped Logible with Transition Probability Matrices (see Figure 3).
After configuring the two tables accordingly, Logible displays two separate transition probability matrices. Each cell
in these matrices indicates the probability of a transition from one learning behavior to the next (according to Berchtold
& Sackett, 2002). Note that we did not build contingency tables with absolute values, since we were interested in
the transition probabilities. We further added a grayscale heat map to these tables to make the data interpretation
quicker and more human-friendly. Cells represented in darker grayscale correspond to a higher transition probability.
Furthermore, these data, i.e. Frequency of Occurrence and Transition Probability Matrices can be easily exported
from Logible in various formats to apply further statistical analyses.

Next, we equipped Logible with yet another representation to contrast learning behavior visually. After configuring
the two tables according to your interests, Logible presents two color-coded first-order Markov Chain Visualizations
according to the selected format and sample (for example see Figure 5 and Figure 6). Each color-coded knot represents
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one of the five behavior patterns. The edges indicate the transition probabilities transferring from one behavior pattern
to another. The thickness of the edges corresponds with the probability (i.e. small edges represent a low transitional
probability whereas bigger edges represent a higher transitional probability).

Figure 3: GUI of Logible for comparing two experimental groups.

4. Measures
In order to answer RQ1, whether di�erences in learning behavior can be made visible using our newly developed

method executed by Logible, the five behavior patterns (see Figure 1) were used for further comparison and analyses.
Therefore, we first looked at the descriptive results of the entire data set (N = 92) to examine di�erences in the fre-
quencies of occurrence of the behavior patterns. Furthermore, a multivariate analysis of variance (MANOVA) with
learning task (annotations vs. hyperlinks) and learning setting (individual vs. collaborative) as between-subject factors
and the relative values of the five behavior patterns (see Table 4) as dependent variables was applied and calculated
with SPSS. Moreover, and according to RQ2, we wanted to investigate if and how learning strategies from successful
and less successful learners can be discovered. Therefore, we focused on the sequentiality of the behavior patterns
of learners, which can be investigated directly in Logible through Transition Probability Matrices and Markov Chain
Visualizations. These two representation formats contain the same information, however, we further report results
based on the Markov Chain Visualization (see Table 5 and Table 6) since we consider this format as more suitable
for fulfilling our purpose, which was to descriptively explore and investigate learning strategies. We contrasted the
values of the edges (i.e. the probability that one behavior pattern follows another) from successful learners and less
successful learners in the same learning task condition and focused on di�erences >15% (symbolized by the Greek
letter Delta = �). We have set the threshold at this percentage since first due to space limitations not all di�erences can
be reported and second smaller di�erences (<15%) may occur randomly due to the sample size. Furthermore, di�erent
percentages (i.e. 5%, 10%, 15% and 20%) were tested and a threshold of 15% yield a su�cient amount of di�erences,
which could be used for discovering di�erent learning strategies.

5. Results
Logible revealed that the 92 log files contained a total of 11’239 single actions. Thereof, Logible could successfully

assign 10’106 actions (i.e. 89.92%) to one of the 17 behavior sequences, which in turn highlights the high sensitivity
of the application. Moreover, a total of 2’346 behavior patterns were found in the data, indicating the capability to
significantly reduce the noise in the action-strings by assigning only the presumed possible behavior sequences for each
experimental condition. Logible therefore passed the manipulation check. Results revealed that the absolute number
of the occurrences of behavior patterns varied among the four experimental conditions. The lowest amount of behavior
patterns was found in the collaborative annotation condition (CA = 414), followed by the individual annotation condi-
tion (IA = 500) and the collaborative hyperlink condition (CH = 693). The individual hyperlink condition performed
the most behavior patterns (IH = 739). Note that for the purpose of this study we focused on relative values for further
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comparison. Therefore, we descriptively investigated the frequency of occurrence of the five behavior patterns over
the whole data set (N = 92). The data revealed that behavior pattern 4. Find and modify occurred most frequently
(26.34%) and almost twice as often as 3. Find and add (13.94%). The behavior patterns 1. Search and add (19.44%),
2. Search and modify (20.72%) and 5. Search and navigate (19.57%) occurred with almost equal frequencies.

Taking a closer look on the four experimental conditions, we saw that the relative frequencies formed distinctive
patterns (see Figure 4). Learners in the annotation conditions (see solid lines) for instance generally modified previously
added annotations more often (see peaks for 2. Search and modify and 4. Find and modify) then they added new
annotations (see 1. Search and add and 3. Find and add). Learners in the hyperlink conditions (see dotted line),
however, performed more often the behavior pattern 5. Search and navigate compared to the learners using annotation.

Figure 4: Relative frequencies per condition.

Table 4
Means and standard deviation (in brackets) per condition and behavior pattern.

1. Search and
add

2. Search and
modify

3. Find and
add

4. Find and
modify

5. Search and
navigate

Annotation Individual 19.94 (14.22) 25.28 (18.34) 13.68 (15.28) 31.28 (19.00) 9.82 (8.45)
Collaborative 21.19 (17.43) 22.24 (15.59) 11.80 (12.44) 25.82 (15.29) 18.96 (16.90)
Total 20.50 (15.55) 23.93 (17.05) 12.84 (13.97) 28.85 (17.47) 13.88 (13.54)

Hyperlink Individual 24.83 (11.21) 15.30 (8.30) 17.72 (12.03) 19.74 (10.29) 22.40 (12.26)
Collaborative 21.26 (13.61) 16.32 (13.55) 19.34 (11.33) 23.09 (12.86) 20.00 (14.20)
Total 23.16 (12.39) 15.78 (10.96) 18.48 (11.61) 21.31 (11.56) 21.27 (13.12)

Results from the MANOVA (for descriptive results see Table 4) revealed a significant main e�ect for learning task
(F(4, 85) = 4.650, p = .002; Pillai’s Trace = .180), as expected (H1b), indicating a di�erence in the frequencies of
behavior patterns between learners in the annotation condition and learners in the hyperlink condition. More precisely,
significant e�ects for the behavior patterns 2. Search and modify (p = .010) and 4. Find and modify (p = .023) were
found, both indicating that these patterns occurred more often in the annotation condition (2. Search and modify: M
= 23.93, SD = 17.05; 4. Find and modify: M = 28.85, SD = 17.47) than in the hyperlink condition (2. Search and
modify: M = 15.78, SD = 10.96; 4. Find and modify: M = 21.31, SD = 11.56). In contrast, significant e�ects for 3.
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Find and add (p = .035) and 5. Search and navigate (p = 0.15) indicated that these behavior patterns occurred more
often in the hyperlink condition (3. Find and add: M = 18.48, SD = 11.61; 5. Search and navigate: M = 21.27, SD
= 13.12) than in the annotation condition (3. Find and add: M = 12.84, SD = 13.97; 5. Search and navigate: M =
13.88, SD = 13.54). However, no significance was found for 1. Search and add (p >.05). Furthermore, and contrary
to our expectations (H1a), no significant main e�ect for learning setting (p > .05), nor any interaction e�ect between
learning setting and learning task (p > .05) was found.

Since the MANOVA revealed no significant influence from learning setting on learning behavior, the data from the
individual and collaborative learners in the same task condition were aggregated for investigating learning strategies
from successful learners (SL) and less successful learners (LSL). Figure 5 shows two Markov Chain Visualizations
(MCV) from SL (left) and LSL (right) both using annotations. Both visualizations contain four data sets (see Table 2).

Figure 5: MCV from SL (left) and LSL (right) using Annotation.

Results revealed that SL in the annotation conditions had higher chances that behavior pattern 1. Search and add
followed after either the behavior pattern 2. Search and modify (SL = 27.3%; LSL = 3.8%; � = 23.5%) and 5. Search
and navigate (SL = 41.2%; LSL = 20%; � = 21.2%). Furthermore, SL had a higher chance that behavior pattern 3.
Find and add followed after 4. Find and modify (SL = 45.5%; LSL = 12.9%; � = 32.6%) and that the behavior pattern
5. Search and navigate followed after 1. Search and add (SL = 15.4%; LSL = 0%; � = 15.4%). On the contrary, LSL
had higher chances that behavior pattern 2. Search and modify followed after either 3. Find and add (LSL = 25%; SL
= 0%; � = 25%) or 4. Find and modify (LSL = 25.8%; SL = 9.1%; � = 16.7%). Moreover, LSL more often performed
behavior pattern 4. Find and modify in a row (LSL = 48.4%; SL = 27.3%; � = 21.1%).

Concerning di�erent transition probabilities for learners in the hyperlink condition (see Figure 6), results revealed
that SL more often performed behavior pattern 1. Search and add in a row (SL = 26.7%; LSL = 4.3%; � = 22.4%) as
well as after behavior pattern 5. Search and navigate (SL = 52.6%; LSL = 37.5%;� = 15.1%). Furthermore, SL had
higher chances that behavior pattern 2. Search and modify followed after either itself (SL = 26.3%; LSL = 6.3%; � =
20%) or after behavior pattern 3. Find and add (SL = 23.5%; LSL = 5.3%; � = 18.2%). SL also had a higher chance
that behavior pattern 4. Find and modify followed by itself (SL = 30.8%; LSL = 15%;� = 15.8%). On the other hand,
LSL using hyperlinks had higher chances that behavior pattern 5. Search and navigate followed after either behavior
pattern 1. Search and add (LSL = 39.1%; SL = 20%; � = 19.1%) or 2. Search and modify (LSL = 31.3%; SL = 10.5%;
� = 20.8%). Moreover, LSL had a higher chance that behavior pattern 4. Find and modify followed after behavior
pattern 3. Find and add (LSL = 31.6%; SL = 11.8%; � = 19.8%).
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Figure 6: MCV from SL (left) and LSL (right) using Hyperlinks.

6. Discussion
The goal of this study was to develop a new method to gain deeper insights into learners’ behavior based on their

digital footprints (i.e. log files) when they learned with an enhanced video-based environment. Successfully, we were
able to get new interesting findings by applying our new method executed by our newly developed application (Logible),
which detects and visualizes meaningful behavior sequences out of fuzzy action-strings automatically and in a time-
saving manner. Therefore, we conclude that di�erences in learning behavior can be made visible (RQ1). Results from
the MANOVA confirmed hypothesis 1b assuming that learning behavior di�ers significantly depending on the learning
task. More precisely, our data revealed that learners using annotations significantly more often modified previously
added annotations than learners using hyperlinks. This can be explained by the fact that modifying annotations - in
contrast to modifying hyperlinks - not only involves the modification of the display time on the video timeline but also
modifications of the self-written texts. In the course of the learning time participants learned new information, which
led them to change or complement their previously written texts. On the contrary, learners in the hyperlink condition
significantly more often added new information by finding an appropriate position in the video (i.e. 3. Find and add)
than learners in the annotation condition. This can be explained by the fact that although both learning task conditions
received the same predefined learning material, learners in the hyperlink condition simply had to add them to the
video whereas learners using annotation additionally had to write summaries in their own words. Thus, the hurdle
to add new information might be smaller for learners in the hyperlink condition than for learners in the annotation
condition. Furthermore, our data revealed that learners in the hyperlink condition navigated more frequently in the
video than learners in the annotation condition. One possible explanation for this result can be found in the consecutive
character of the behavior sequences within the same behavior pattern (see Figure 1). The annotation condition had ten
possible behavior sequences that contain searching a position in the video whereas the hyperlink condition had only six.
Whenever learners first navigated in the video and then either added or modified an annotation the initial navigation
part of the action-string resulted in a higher prioritized behavior sequence. Since we could not find any evidence
confirming Hypothesis 1a, which assumed a di�erence in learning behavior between the learning settings (individual
vs. collaborative), we therefore conclude that experimental groups belonging to di�erent learning settings showed
more similar learning behavior than experimental groups with di�erent learning tasks (annotation vs. hyperlinks).

Furthermore, by applying our method we were able to examine learning strategies from successful and less suc-
cessful learner (RQ2). The most profound di�erence found by investigating transitional probabilities using Markov
Chain Visualizations from successful and less successful learners was that in both learning task conditions successful
learners in contrast to their less successful counterparts performed with a higher chance behavior pattern 5. Search and
navigate followed by behavior pattern 1. Search and add. In other words, successful learners were more likely to first
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actively search a part in the video to watch it and then jumped either back or forth in the video timeline to a specific
part of the video to add an annotation or a hyperlink. We interpret this finding as evidence that successful learners
thoroughly planned where to place an annotation or a hyperlink and thereby intensively engaged with the learning ma-
terial. This is in line with findings from Zahn et al. (2010) and Zahn et al. (2012) since successful learners in our study
designed a thoroughly planned hypervideo structure and therefore successfully learned a complex science topic. In ad-
dition, this result confirms that through active participation in constructing information, learners actively transformed
existing video representations into their own enriched information structures (according to Schwartz & Hartman, 2007;
Yousef et al., 2015), and therefore actively generated meaning (according to Wittrock, 1992) and designed their own
learning content (according to Kafai & Resnick, 1996; Papert, 1994).

7. Conclusion, limitations and future work
We were able to add new original findings to the corpus of the rare existing research on the e�ects of behavior

sequences for a more in-depth understanding of learning behavior in the setting of remote video learning. With Logible
we created a tool that enables researchers to better understand learning processes even from afar by analyzing logged
interaction data. Which is of particular interest since teachers around the world have not been able to observe students
learning behavior as usual, due the coronavirus and the associated closing of schools and universities (UNESCO,
2020). We conclude that applying our newly developed method executed by Logible generated deeper insights into
students’ learning behavior by detecting and investigating meaningful behavior sequences and behavior patterns instead
of raw user interactions on a granular clickstream level. Furthermore, Logible is designed to be a highly sensitive,
customizable and time-saving application. Therefore, we encourage researchers in the field of CSCL to consider
working with Logible whenever focusing on broader behavior instead of raw clickstream data.

Our methodological approach, however, was limited by the fact that we did not consider the time interval between
each action. Therefore, we could not make any statement on the time spent on each behavior pattern. However, we
took this into account by calculating and reporting relative values. Our methodological approach was characterized by
intensive data exploration which eventually led to a rule-based sequence detection. In addition, future research could
also focus on applying Artificial Intelligence (AI), since AI is particularly superior in pattern recognition and therefore
could find patterns, which might di�er from the ones humans detected. In literature research we further identified
di�erent approaches to compare sequential data and investigate learning strategies. However, we deliberately chose
to stick with our initially exploratory approach and therefore used Markov Chain Visualizations to analyze di�erent
learning strategies. We consider this approach su�cient for answering the research question. Especially focusing
and reporting di�erences in knowledge gain greater 15% yield to interesting new insights. Nevertheless, we consider
algorithms such as Optimal Matching (OM) (for more see e.g. Abbott, 1995; Brzinsky-Fay & Kohler, 2010) as a suitable
procedure for comparing behavior patterns as well, since it allows operations such as substitution (i.e. changing one
element into another element), insertion (i.e. insert an element at a specific position), as well as deletion (i.e. delete
an element at a specific position). Thereby the distance between two sequences can be calculated by the number
of operations it takes to transform one sequence into another one. Using this procedure, typical learning behavior
can be discovered and used for further comparison (Brzinsky-Fay & Kohler, 2010). Furthermore, we contemplate
content analysis according to Mayring (2010) as a further promising approach to investigate learning strategies in-
depth. Therefore, we suggest representing behavior patterns or even behavior sequences in their observed order and
then transfer them into a written format. As an advantage this would preserve the real order of behavior patterns which
otherwise, as in our approach calculating probabilities, would get lost. Next, the text can be evaluated in terms of
content analysis. Finally, we see a further development of our method as promising, whereas behavior patterns could
be treated as input data (similar to actions in this contribution). Through an exploratory pattern recognition process and
following rule-based procedure semantically meaningful combinations of behavior patterns could lead to underlying
behavior strategies. Logible, as a new and useful application that already provides interesting insights into learning
behavior, is a promising solution to further explore learning behavior. Hence, we would also like to further improve
Logible e.g. by implementing statistical functions such as analysis of variance, regressions, and correlations for direct
comparison of data without using any other software.
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A. Logible
Logible as a free demo including six example data sets is available under: https://sequence-analysis.

frametrail.org/

B. Declaration
This contribution shall be understood and treated as a master thesis of the School of Applied Psychology at the

University of Applied Sciences and Arts Northwestern Switzerland (submitted on January 14, 2021). It serves as a first
draft and not yet as a manuscript to be submitted in the Journal Computers & Education. Parts of this contribution have
already been submitted as a full paper in the ISLS Conference 2021. Acceptance letter will from the ISLS Conference
arrive on February 20, 2021.
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