
14 IMVS Fokus Report 2015

Secure Physical Access with
NFC-enabled Smartphones

This paper presents a smartphone-based physical access control system in which the access points are

not directly connected to a central authorization server. The access points ask the mobile phone whether

a particular user has access or not. The mobile phone then relays such a request to the access server. The

authentication of the smartphone is based on public-key cryptography. This requires that the private key

is stored in a secure element or in a trusted execution environment to prevent identity theft. In our solu-

tion we use the following secure element archiectures: Host Card Emulation (HCE) and a microSD-based

secure element. We show that the HCE approach cannot solve the relay attack under conservative security

assumptions and we present and discuss an implementation based on a microSD secure element that still

allows the access points to connect to the authorization server upon every access albeit the access points

are not connected with it.

Christof Arnosti, Dominik Gruntz, Marco Hauri | dominik.gruntz@fhnw.ch

The smartphone has become the central gadget in

our life and makes our wallet more and more re-

dundant. We use the phone for mobile payment,

for mobile ticketing and soon it will replace all the

smart cards we carry in our wallet.

This paper presents a physical access control

system (PACS) in which the access card is replaced

by a smartphone. The access points are not con-

nected; they check whether access is granted by

sending an access request to the mobile phone.

The mobile phone either forwards such a request

to the access server or, if it is not connected to the

internet, presents an access token stored on the

mobile phone to the access point. Access is thus

possible even if the mobile phone is not connected

to the internet.

The communication between the mobile phone

and the access point is based on Near Field Com-

munication (NFC). NFC is a short-range wireless

technology that enables communication between

a smartphone and an access point over a distance

of approximately 10 cm or less. NFC operates at

13.56 MHz and can achieve (theoretical) trans-

fer rates up to 424 kbit/s. A growing number of

smartphones are equipped with NFC [12].

We define a PACS as a system that controls ac-

cess to physical resources like buildings, rooms

or protected areas, using user-specific access

control rules. A PACS supports two main activi-

ties: authentication and authorization. When a

person requests access to a physical resource

then it claims its identity and the authentication

process verifies this claim. Authorization then de-

fines whether access is granted for this identity or

not. In a PACS, the authentication process checks

whether the person

• knows a secret (e.g. a password or a PIN),

1 This is the submitted version of a paper which has been

accepted for the 13th International Conference on Advances in

Mobile Computing and Multimedia (MoMM15), 11 - 13 Decem-

ber 2015 in Brussels, Belgium.

• has something (e.g. a key or a token), or

• has a unique property (e.g. biometric proper-

ties).

PACS based on NFC are not new. Such systems typ-

ically store the access rights on the SIM card or

on an embedded secure element and they depend

on third party suppliers, for example mobile net-

work operators (MNOs), trusted service managers

(TSMs), smartphone manufacturers like Google,

Apple or Samsung, or identity service providers

like Legic IDConnect.

In this paper we present a PACS which is inde-

pendent of third party providers. The smart card

is replaced by the smartphone which is connected

to the access server. However, since these phones

are programmable and network connected, they

provide a large surface for attacks [8]. In this pa-

per we describe and analyze the security of dif-

ferent authentication solutions developed in the

context of a concrete PACS. In particular we pres-

ent a novel authentication process which prevents

software proxy attacks.

The rest of the paper is organized as follows:

In the next two sections we describe the general

structure of our solution and the designed proto-

cols. The security properties are analyzed in the

section „Attack Surfaces“ and a solution to the

authorization problem is presented in the section

„Separate Secure Element“. Finally, we describe

further (physical) attacks and compare the differ-

ent PACS approaches. After an overview of related

approaches we conclude with the results.

PACS Models

A classical PACS consists of three components:

A server, identity cards and access points (doors

with electronic components). There exist two com-

mon interaction models for these components.

In the online access point model the access

point is connected with the server over a network

connection. In this model, the card acts as an au-

15IMVS Fokus Report 2015

thentication-only component. The access point

authenticates the card and accesses the server to

get authorization information for the authenticat-

ed card. The server then decides whether the ac-

cess is permitted or not.

In the offline access point model the access

point has no connection to the server. Authori-

zation data for a set of access points is stored on

the card. Such authorization data contain access

rights which are only valid for a limited time

(which is defined individually by the server for

each access point and each card) and has to be

renewed periodically by the end-user. The access

point is able to authenticate the card and to get

the authorization data directly from it.

A PACS in which the identity cards are emu-

lated by smartphones can follow both models. But

since a smartphone is a connected device, a third

model is possible, namely a model where the of-

fline access point is connected to the server using

the smartphone as a proxy. This model combines

the advantages of the other two models, i.e. the

access points don’t need a network connection

(which means reduced infrastructure costs) but

nevertheless support the verification of access

rights at access time.

In our system the smartphone is responsible

for authentication. Authorization data is request-

ed from the server by the smartphone after the

initial contact between the access point and the

smartphone (see Figure 1).

We also implemented the possibility to store

access rights on the smartphone (similar to the

offline access point model), but we do not discuss

this in this paper since the security implications

do not change.

Protocol Design

As shown in Figure 1, the protocol scheme of our

smartphone-based PACS consists of two proto-

cols: the authentication protocol to authenticate

the smartphone to the access point and the autho-

rization protocol to transmit authorization data

between the server and the access point, using the

smartphone as a relay.

The authentication protocol is based on pub-

lic-key cryptography. On the smartphone, an RSA

key pair is stored. The public key of this key pair

is known to the authorization server and is includ-

ed in the authorization answer which is signed by

the server. This signature links authorization and

authentication by proving that the authentication

response is made by the device the authorisation

response belongs to.

Both parts of the protocol are initiated by the

access point and the requests for both parts are

simultaneously sent from the access point to the

smartphone using NFC. The answers are also si-

multaneously sent by the smartphone to the ac-

cess point.

Authentication Protocol

To authenticate the smartphone (M), the access

point (A) sends a nonce to the smartphone. The

smartphone signs this nonce and sends the sig-

nature (sig) back to the access point. The access

point then can check if the signature was created

using the private key belonging to the same key

pair as the public key sent and signed by the serv-

er in the authorization protocol.

1. NFC: A M: Nonce
A

2. NFC: M A: sig
M

(Nonce
A
)

Authorization Protocol

The authorization request sent by the access

point (A) to the smartphone (M) consists of two

segments: The access point ID and a nonce. This

information is relayed to the server (S). By using

SSL for the transport, the ID of the smartphone

is provided to the server in the form of an X.509

client certificate.

The server can decide whether the access re-

quest should be granted or denied based on the

access point ID, the smartphone ID, current time

and access rights stored and managed by the

server.

1. NFC: A M: ID
A
 || Nonce

A

2. Internet (TLS): M S: ID
A
 || Nonce

A
 || Clientcert

M

3. Internet (TLS): S M: AccessOK || sig
S
(Pubkey

M

|| ID
A
 || Nonce

A
 || AccessOK)

4. NFC: M A: Pubkey
M
 || ID

A
 || Nonce

A
 || AccessOK ||

sig
S
(Pubkey

M
 || ID

A
 || Nonce

A
 || AccessOK)

The access point ID, the nonce and the informa-

tion whether the access was granted is encoded in

the authorization answer, together with the pub-

lic key of the key pair stored on the smartphone.

The access point can verify the identity of the

phone with the public key, and it can validate the

authorization answer by means of a cryptograph-

ic signature based on a common secret known by

the access point and the server.

To reduce the amount of data transferred be-

tween the server and the smartphone, all data al-

ready known by either side (access point ID, nonce

and smartphone public key) are omitted. These Figure 1: Smartphone solution

16 IMVS Fokus Report 2015

data are re-attached by the smartphone before the

whole packet is relayed back to the access point.

Attack Surfaces

Access control systems are security sensitive sys-

tems, a breach of security could lead to physical

break-in and subsequently theft, sabotage or espi-

onage. Because of this, security assumptions have

to be conservative.

We assume that the smartphone and data

transmission channels are insecure (marked with

an insecure sign in Figure 2). Attackers with the

right infrastructure can create man-in-the-mid-

dle scenarios to monitor or manipulate data sent

over the internet or over the NFC connection. Mal-

ware inadvertently installed on a smartphone

allows an attacker to gain full control of the in-

stalled software, to examine stored data and to

run applications.

To allow the access point to securely decide

about granting or denying access, two conditions

have to be met: First, the authentication of the

smartphone has to be secure; and second, the au-

thorization data transmitted from the server must

not be tampered with.

In the next two sections we describe attacks

directly related to the protocol. Further attacks

are described in the section „Physical Attacks“.

Attacking Authorization

An attacker with control over the network connec-

tion between the smartphone and the server can

read and manipulate any transmitted data. To

mitigate this type of attack, a TLS secured con-

nection is used. X.509 certificates are used to au-

thenticate the smartphone and the server to each

other. With this technology in place, an attacker

can only read the encrypted data, and any manip-

ulation would immediately be detected.

The authorization data sent by the server to the

access point is relayed by the smartphone, thus

an attacker with control over the smartphone

software can read and alter the transmitted data

while it’s passing through the smartphone. To al-

low detection of altered authentication data the

server and the access point share a common se-

cret which is used to digitally sign the transmit-

ted data. By reading the authentication data sent

by the server, the only valuable additional infor-

mation an attacker gains is whether the attacked

smartphone has access rights to the access point

at the time of transmission.

With the nonce which is sent to the server and

back to the access point, a replay attack (in which

an attacker sends the same answer multiple times

to reuse old authorization data) can be detected.

The access point simply compares the received

nonce with the sent one to see if the answer cor-

respondents to the current request. To check the

integrity of the authorization answer, the access

point can create a signature of the payload data

and compare it to the signature sent by the serv-

er. If the signatures don’t match, the message was

either not signed by the correct server, or changed

in transit.

An attacker with control over the smartphone

software, and thus over the TLS authentication

used to verify the identity of the smartphone to

the server, can send multiple authorization re-

quests to the server to gain information about the

access rights of the attacked smartphone.

Attacking Authentication

While detecting manipulation of authorization

data is relatively easy since both ends of the com-

munication are trusted components, the authenti-

cation process is more difficult to handle. The se-

curity of the authentication protocol relies on the

possibility to store a secret key in a secure storage

on the smartphone.

When confronted with a simple smartphone

software solution, an attacker with system-level

access can simply read the private key which is

used to authenticate the smartphone against the

access point. This private key can then be used

on another device to impersonate the attacked

smartphone.

Starting with version 4.3, Android provides

support for hardware-based key stores [1]. Such

key stores depends on the availability of security

hardware (mostly integrated into the CPU of the

smartphone) and on the software implementation

of device manufacturers. If a hardware-based key

store is present in a device, a smartphone applica-

tion can use it to securely store the private key of

a key pair and to execute private key operations

without the possibility that the Android OS or any

Figure 3: Software relay attack: a) the authorisation request,

b) the authorisation answer

Figure 2: Attack surfaces: only the access point and the server

assumed secure

17IMVS Fokus Report 2015

third-party applications can extract the private

key [6, pp. 178-180].

Even if a hardware-based key store is used,

an attacker can apply a software relay attack on

the key store (similar to the relay attack on a se-

cure element described by Michael Roland [14]) to

execute the needed private key operations on the

victim’s smartphone at the time of access with

a second smartphone (Figure 3). To achieve this

goal, the attacker uses a smartphone to create a

connection with the access point system. He then

sends the authentication request by internet to a

malware application on the victim’s smartphone,

where the malware can execute the necessary

private key operations to generate the signature

needed for authentication and send back the re-

sult to the attacker’s smartphone.

The software relay attack can only be solved

using a separate trusted processing environment

with its own NFC connection to securely authen-

ticate the smartphone to the access point. This

processing environment executes all private key

operations and sends the result directly to the ac-

cess point without the possibility that any code

executed on the smartphone CPU can access the

result. Such a solution which still supports online

authorization is described in the next section.

Separate Secure Element

As discussed in the last section, a separate piece

of hardware is needed which can communicate to

the access point by NFC and to the smartphone

(see Figure 4). Such a secure processing environ-

ment is typically called a secure element (SE) or

trusted execution environment (TEE). By adding

this piece of hardware, we gain another secure

component in the system which can be used for

authentication.

Secure Elements

Most modern SEs or TEEs are very small com-

puters which are used in many different security

sensitive applications – for example banking and

credit cards, SIM cards, as an implementation for

hardware-based key stores in Android phones, for

access cards and also in smartphone NFC solu-

tions. An SE contains at least a processing unit,

program memory (typically flash memory), execu-

tion memory (RAM) and an interface to allow con-

nections to other systems. Most SEs also contain

cryptographic hardware to speed up the execution

of cryptographic calculations. Typical interfaces

to access the software of a smartcard are 8 pin

plated contacts (banking cards), NFC (wireless

banking cards) or soldering points (embedded SE).

While older secure element hardware was pro-

duced for special use cases, modern SEs contain

an operating system with a standardized pro-

gramming interface. An entity which wants to use

secure elements – for example a bank – can devel-

op an applet for their use case, deploy it to a num-

ber of secure elements, personalize the element

(by executing special functionality of the applet to

generate an ID or cryptographic secrets) and dis-

able the programming functionality to guarantee

data and application security. Only the issuer or a

trusted third party can reprogram the secure el-

ement using cryptographically secured methods

provided by the card operating system.

The most widespread programming interface

for SEs is JavaCard. JavaCard is a slimmed-down

Java variant specifically tailored to the securi-

ty needs and low resources of a secure element.

Special methods of persistence and transaction

support are integrated in the language, and cryp-

tographic methods are supported. Communication

between a card terminal and the application on

the card is standardized as ISO 7816. The protocol

is a simple serial request/answer protocol which

utilizes Application Protocol Data Units (APDU) to

transfer information. A subset of these APDUs are

standardized, others can be used in proprietary

applications.

For our project we analyzed different program-

mable models of SEs which can be used in combi-

nation with a smartphone. One requirement was

that the SE contains two separate interfaces, an

NFC interface to communicate to the access point

and an interface to communicate with the smart-

phone. Also, the application on the card must have

the possibility to determine which communica-

tion channel is used to prevent the execution of

the authentication method by software running

on the smartphone CPU. We found such an SE in

the form of a microSD card with a built-in NFC Figure 5: Overview of the protocol of a PACS with a microSD-SE

Figure 4: Use of a secure element for authentication

18 IMVS Fokus Report 2015

transceiver: the CredenSE 2.10J developed by De-

viceFidelity [3]. The SE embedded in this microSD

card can be accessed from a mobile phone through

a specific API.

PACS with a microSD-SE

In the PACS we designed and implemented we

not only needed to authenticate the smartphone,

but also at the same time to transfer authoriza-

tion data from the server to the access point. To

achieve this goal, we implemented a JavaCard ap-

plet which allows to authenticate the card to the

access point as well as to relay data to the smart-

phone and subsequently to the server as shown in

Figure 5.

All connections to the SE have to be initiated

by either the smartphone or the access point, and

it’s not possible for the SE to communicate with

both endpoints at the same time. Due to these cir-

cumstances we implemented a stateful JavaCard

applet to relay the information to the smartphone

and back. The NFC transceiver of the SE we used

in the project has to be activated by an application

running on the smartphone using a driver soft-

ware. The driver software also allows to register

a callback listener which gets notified when the

secure element NFC transceiver enters or leaves

the electromagnetic field of a NFC reader.

To use the PACS, the end-user has to activate

the NFC transceiver of the SE by using the smart-

phone application which we developed. In the

next few paragraphs we will describe the differ-

ent phases of the process which is used to authen-

ticate and authorize a phone to an access point.

The transaction is also described as sequence di-

agram in Figure 6.

In the first phase of the process, after the

smartphone user activates the NFC interface and

touches the access point, the access point initi-

ates the connection and sends the authorization

and authentication request to the JavaCard ap-

plet which enters a second state. The access point

then has to disable the NFC field to signal to the

smartphone application that the first phase of the

process is finished.

In the second phase of the process, the smart-

phone application initiates the connection to the

SE after having received the callback that the NFC

field of the reader is left (because the reader shut

down the field). The smartphone application es-

tablishes a connection to the SE and sends a com-

mand to ask for the authorization request. While

still holding the connection to the SE, this request

is forwarded to the server by the smartphone ap-

plication and – after having received the authori-

zation answer from the server – the the answer is

Figure 6: Sequence diagram of an access request using the secure element solution for secure authentication

19IMVS Fokus Report 2015

sent back to the JavaCard applet which stores it

and enters the third state. The smartphone now

utilizes the driver software of the SE to enable

the NFC transceiver and the access point gets a

chance to detect the presence of the secure ele-

ment.

In the third phase, the connection is again ini-

tiated by the access point. The access point can

now read the answers for both the authentication

and authorization requests sent in the first phase.

The answer to the authorization request is the one

sent by the smartphone in phase 2, the answer

to the authentication request is computed by the

JavaCard applet at this point in time. With these

answers the access point has all necessary infor-

mation to validate the authentication and authori-

zation of the smartphone.

The authentication request is transferred by

NFC directly from the access point to the SE.

Since the SE is responsible for creating the au-

thentication response and since the answer is

directly transferred back to the access point by

NFC, an attacker controlling the smartphone soft-

ware cannot execute any public key operations

nor read the private key. With the SE not allowing

such operations by the smartphone, software re-

lay attacks as described in the section „Attacking

Authentication“ are not possible. By intercepting

the connection between the access point and the

secure element, an attacker with sufficient infra-

structure can execute a hardware relay attack as

described in the next section.

The transaction duration is increased by using

this method because of the way the callback on

NFC field events is implemented in the software

driver. Internal in the driver, a loop checks the

NFC field status every 0.5 seconds and notifies the

callback listener on change of the NFC field sta-

tus. We manage to trick the driver into perform-

ing this check every 0.1 seconds. With this change

in frequency, the additional time compared to a

software-only solution (thus, the maximal time

needed until the callback is called plus the time

needed for turning off and on the NFC transceiver

of the secure element) is around 150 ms.

Physical Attacks

In this section we describe attacks where an at-

tacker needs to gain physical access to the smart-

phone used in the PACS. There are two main at-

tacks in this category: theft and the so called

hardware relay attack [7]. Both of these attacks

are also possible with a classic NFC card-based

PACS.

To execute a hardware relay attack, an attack-

er needs two NFC-capable smartphones. These

smartphones are connected – for example via In-

ternet – and act as a proxy for NFC-transmitted

data. With this setup, an attacker can extend the

reach of the NFC transaction. To use this often-de-

scribed attack [7, 10. 2. 11], the attacker places one

of the smartphones at the reader, and the other on

the victim’s smartphone (see Figure 7). The smart-

phone placed at the access point now forwards all

requests sent by the reader to the second attacker

smartphone. The requests then get forwarded to

the attacked smartphone and the answers are sent

back using the same way.

When a smartphone is stolen, the attacker has

the same possibilities as with the hardware re-

lay attack (except that the relay infrastructure

is not necessary). In our PACS, physical attacks

and theft are addressed with the following two

risk-reducing factors.

First, as the authorization data is loaded from

the server at access time, an attacker cannot use

a stolen smartphone after the theft was detected

and the access rights got revoked server-side.

Second, the end-user needs to manually start

the NFC transaction. For this, he has to unlock

the smartphone and use a button inside of an in-

stalled application (but it’s also possible to use

a widget to place this button on the home screen

of the smartphone). Because of the limited possi-

bilities of the used secure element it’s necessary

that the SEs NFC interface is activated prior to a

transaction, but the decision that this has to be

manually done by the end user is a security fea-

ture. The end user (or the institution issuing the

smartphone) can decide to configure security

features like a display lock on the smartphone to

complicate unauthorized use of the smartphone.

If an attacker wants to perform a physical attack,

he needs to activate the NFC interface of the se-

cure element, and thus first needs to be able to

operate the smartphone application.

However, if it is possible for an attacker to

attack a smartphone at the same time physical-

ly and digitally, he can start an NFC transaction

software-wise and use the NFC connection either

in a hardware relay attack or directly at the ac-

cess point. Such an attack works as long as it is

not detected and the access rights are still val-

id on the server. To mitigate the effects of such

an attack, a PACS needs to rely on additional au-

thentication technologies beyond simply checking

the ownership of a smartphone. Examples of such

technologies are checks of biometric features like

fingerprints or checks of knowledge like a PIN at

the access point.

Figure 7: Hardware relay attack: An attacker uses two smart-

phones to extend the reach of the NFC transaction

20 IMVS Fokus Report 2015

In the case that an attacker manages to per-

form a hardware relay attack he can read and ma-

nipulate the data sent in between the access point

and the smartphone. The design of the protocol

(as discussed in the section „Protocol Design“)

guarantees that an attacker cannot manipulate

the data undetected. Any data the attacker can

read while eavesdropping this connection is ei-

ther public, valid for only one transaction or of no

added value. In particular the information wheth-

er access is granted for the attacked smartphone

at the time of the interception has no added value

as the attacker could simply watch if the physical

access point allows access or not.

PACS Comparison

A classical PACS works with cards, but there exist

systems where the card is emulated by a UICC-SE

(SIM card) or an SE embedded in a smartphone.

In this paper we have shown how such a smart-

phone-based PACS can be implemented indepen-

dent of mobile network operators, the services of

a trusted service managers and handset manufac-

turers, both with HCE and with a microSD-SE.

In this section we compare the following four

PACS variants (these variants correspond to the

columns in Table 1).

• Card: With this variant we refer to a card-on-

ly solution. Such a system could be based on

Mifare DESFire cards which are ISO 14443-4

compliant and which are accessible over NFC.

• SE: This variant stands for all solutions which

depend on third parties like MNOs, TSMs or

handset manufacturers. Examples are the

solution from Kaba [9] which is hosted by Legic

Connect or Tapit, a solution from Swisscom

[16]. Tapit will be denounced by the end of 2015.

• HCE: This is the solution described in the sec-

tion „Protocol Design“ which is implemented

without using a SE.

• microSD-SE: The microSD-SE-approach uses

a separate SE to solve some security problems

of a HCE-only solution as shown in the section

„Separate Secure Element“. In our project we

used a microSD-SE from DeviceFidelity.

We performed the comparison along the following

criteria, and for all implementation variants we

marked each criterion in Table 1 either with a +

sign (positive), a – sign (negative) or with a 0 (neu-

tral).

• Third party independence: Except for the

SE-variant, all other variants are independent

of a third party, i.e. the PACS service provid-

er has full control over the technology and can

provide its own applications.

• Key security: Under this criterion we compared

how secure user credentials can be stored. For

the HCE variant such credentials can be stored

in a hardware-based key store if such a feature

is provided by the phone hardware.

• Hardware relay attack: A hardware relay at-

tack can be executed if the (emulated) card is

accessible without further interaction. This is

obviously the case for cards, but also for the

SE-variant (for usability reasons, otherwise

the access token could not be used if the phone

has been turned off). For the HCE and the mi-

croSD-SE variants the hardware relay attack

can only be executed if the device has been

unlocked (and a special application has been

started in addition for the microSD-SE vari-

ant). HCE on the other hand is vulnerable by

this attack.

• Software relay attack: Obviously the card-on-

ly variant is immune to software attacks, and

for the SE-variant the software relay attack is

also not possible if the system is implemented

properly and does not allow that private key

operations are executed from the phone host.

Card SE
UICC or embedded

HCE
software-only

microSD-SE
SE & software

Third party independence
(MNO/TSM/manufacturer)

(+) no dependency
(–) MNO/TSM

dependency
(+) no dependency (+) no dependency

Key security
(security of key storage)

(+) secure (+) secure (0) device dependent (+) secure

Hardware relay attack
(theft / physical security)

(–) always as NFC is
always on

(–) always as NFC is
always on

(+) on unlocked device
only

(+) after user interaction
only

Software relay attack
(software proxy)

(+) not possible (+) not possible (–) insecure (+) secure

Time to open
(usability)

(+) system dependent (+) system dependent
(+) same performance

as card
(0) like HCE + 150 ms

Online authorization
(for online access points)

(–) not possible (0) system dependent (+) possible (+) possible

Offine access rights
(for online smartphones)

(–) terminal
(0) over MNO or

terminal
(+) online over

smartphone
(+) online over

smartphone

Table 1: Comparison between different PACS

21IMVS Fokus Report 2015

This is the condition which is also met by the

microSD-SE which we used in the implementa-

tion of our project.

• Time to open: We expect that all solutions

show a comparable timing, except for the mi-

croSD-SE variant which takes about 150 ms

longer than the HCE variant.

• Online authorization: The online authorization

is possible for the HCE and the microSD-SE ap-

proaches. We don’t know any systems where an

UICC-SE or an embedded SE is used while also

providing online authorization data via NFC,

and we don’t know if all requirements are met

to enable such an implementation.

• Offline access rights: Although we focused on

online authorization in this paper, our solu-

tion can also be used if the smartphone is not

connected to the access server. In this case an

access token is sent to the access point in re-

sponse to an access request. These tokens are

renewed regularly and automatically as soon

as the smartphone is connected. For card-on-

ly systems access rights can be stored on the

cards (in addition to the authentication cre-

dentials), but then the user has to reload this

card at specific terminals. For the UICC-SE

approach a reload of access tokens can be per-

formed over a terminal or over MNO specific

technologies. It would also be possible to load

access rights to an UICC-SE using the smart-

phone’s internet connection, but the SE would

have to distinguish the access paths in order to

prevent the software relay attack.

According to the criteria we used in this com-

parison the microSD-SE approach has a lot of ad-

vantages in the security and usability criteria.

Financially, the microSD approach is relatively

expensive since the cards need to be bought for

every user. As the same infrastructure can be

used for the HCE variant, the higher financial in-

vestment directly correlates to higher security.

Related Work

Several NFC-based access control systems for

smartphones have been described and implement-

ed, but most of them are not public. NFC-based

PACS typically either use a UICC-SE [9,16] or they

are HCE-based [17].

Before HCE was available in the Android

framework, an alternative was to use the inverse

reader mode [15]. Systems that adopted this ap-

proach are, for example, AirKey from EVVA and

NFC Porter from IMA. These systems both store

their credentials on the mobile phone for offline

use [13].

Most UICC-SE solutions follow the online ac-

cess point model described in the section „PACS

Models“, i.e. the access points are typically con-

nected to the authentication server, and over these

connected access points the data stored on the SE

can be updated securely.

All HCE-based solutions suffer from possible

software relay attacks. The same holds for all

other access control solutions which store the

credentials in a SE, but use other communication

technologies like Bluetooth Smart (BLE) to con-

nect to the access point and to the authentication

server and thus use an application running on the

smartphone to move authentication data. A sys-

tem which follows this approach is HID’s Mobile

Access . The relay attack problem is often mitigat-

ed by additional security checks such as the need

to enter a PIN or the check of biometric features

directly at the access point.

The general structure of our microSD-SE based

solution follows the model described in [4], but

that model explicitly excludes relay attacks as the

focus is on delegatable authentication for NFC-en-

abled smartphones. To mitigate relay attacks

distance-bounding techniques are proposed.

These techniques determine an upper bound on

the round-trip time of request-response pairs [5].

However, this approach cannot be applied to on-

line solutions where the access server has to be

connected before the response is sent back to the

access point.

Results

We have presented a smartphone-based PACS in

which the access points communicate with the ac-

cess server over the smartphone connected to the

access point. This relay approach allows different

attacks, in particular the hardware- and the soft-

ware relay attack. The hardware relay attack can

be mitigated by protecting the smartphone with a

screen lock.

2 http://www.evva.at

3 http://www.nfcporter.com

4 http://www.hidglobal.com

Figure 8: Implementation of our PACS in action

22 IMVS Fokus Report 2015

We have shown that the software relay attack

can be prevented with a microSD-based SE which

communicates directly to the access point. For the

online authorization the microSD-SE must be able

to communicate with the server over the smart-

phone. Our contribution is to show that such an

approach can be implemented and that the speed

is still acceptable. A picture of the implemented

solution in action is shown in Figure 8.

A drawback of the microSD-SE approach be-

yond additional costs is that the microSD-card is

typically provisioned by a single service provid-

er (in our case this would be the provider of the

PACS). An end user wanting to use microSD-SE

based PACS from multiple service providers would

have to switch microSD-cards.

A PACS usually has to support several levels

of security. With the solution presented in this

paper, the same infrastructure and the same pro-

tocols can be used for the HCE as well as the mi-

croSD-SE variants. The less secure HCE variant

could be rolled out to most of the users who have

access to a building, and users having access to

high security areas inside that building could use

the microSD-SE based solution.

Acknowledgements

We would like to thank the Swiss Commission

for Technology and Innovation (CTI) which cofi-

nanced this project. Many thanks also go to Carlo

Nicola at FHNW for his help in the protocol design

and to Markus Freund at Bixi for the vital task of

implementing the access point part of the proto-

col.

References
[1] Android open source project. Android keystore system. https://

developer.android.com/training/articles/keystore.html. Accessed:

2015-08-21.

[2] C. Arnosti and D. Gruntz. Man-in-the-Middle: Analyse des Daten-

verkehrs bei NFC-Zahlungen. IMVS Fokus Report, 8(1):24-31, 2014.

[3] DeviceFidelity Inc. CredenSE 2.10j classic is NFC card-emulation

and certied JavaCard SE in a MicroSD. 2013. http://devifi.netfirms.

com/devifi.com/assets/DeviceFidelity_CredenSE.pdf

[4] A. Dmitrienko, A.-R. Sadeghi, S. Tamrakar, and C. Wachsmann.

SmartTokens: Delegable access control with NFC-enabled

smartphones. In International Conference on Trust & Trustworthy

Computing (TRUST), volume 7344 of Lecture Notes in Computer

Science (LNCS), pages 219-238. Springer, June 2012.

[5] S. Drimer and S. J. Murdoch. Keep your enemies close: Distance

bounding against smartcard relay attacks. In Proceedings of 16th

USENIX Security Symposium on USENIX Security Symposium,

SS'07, pages 7:1-7:16, Berkeley, CA, USA, 2007.

[6] N. Elenkov. Android Security Internals: An In-Depth Guide to

Android's Security Architecture. No Starch Press, San Francisco,

CA, USA, 1st edition, 2014.

[7] L. Francis, G. Hancke, K. Mayes, and K. Markantonakis. Practical

relay attack on contactless transactions by using NFC mobile

phones. IACR Cryptology ePrint Archive, Report 2011/618, 2011.

http://eprint.iacr.org/2011/618.

[8] T. Janssen and M. Zandstra. HCE security implications. Technical

report, UL Transaction Security, 2014.

[9] Kaba. Mobile access solutions. http://www.kaba.com/en/kaba/

innovation/654636/mobile-access-solutions.html.

[10] E. Lee. NFC Hacking: The Easy Way, 2011.

[11] M. Maass, U. Müller, T. Schons, D. Wegemer, and M. Schulz.

NFCGate: An NFC Relay Application for Android. In Proceedings

of the 8th ACM Conference on Security & Privacy in Wireless and

Mobile Networks, WiSec '15, New York, NY, USA, 2015.

[12] NFC World. NFC phones: The denitive list. http://www.nfcworld.

com/nfc-phones-list. Last updated on 21 August 2015.

[13] M. Roland and J. Langer. Comparison of the usability and security

of NFC's dierent operating modes in mobile devices. e&i Elektro-

technik und Informationstechnik, 130(7):201-206, 2013.

[14] M. Roland, J. Langer, and J. Scharinger. Applying relay attacks

to google wallet. In 5th International Workshop on Near Field

Communication (NFC), pages 1-6, Feb 2013.

[15] C. Saminger, S. Grunberger, and J. Langer. An NFC ticketing

system with a new approach of an inverse reader mode. In 5th

International Workshop on Near Field Communication (NFC), Feb

2013.

[16] Swisscom. The swiss wallet of tomorrow. http://www.tapit.ch/en.

[17] Telcred AB. A new approach to access control. http://telcred.com.

Accessed: 2015-08-20.

