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Abstract In this work, we consider a situation where multiple providers
(competitors) serve a common market, using a common infrastructure of
sales channels. More specifically, we focus on multiple web shops that are
run by the same web shop platform provider. Our goal is to recommend
new items to complement the assortment of a provider, based on user
behaviour in the other shops of the same platform. For this new prob-
lem, we propose to capture information on how items sell together in a
shared product co-occurrence graph. We then adapt known graph-based
recommenders to the problem. Further criteria for ranking recommended
items are derived as part of a case study conducted in the context of IT
web shops. They are combined with the scores of the graph recommend-
ers in a final ranking function. We evaluate this function with data from
our case study context and based on judgments of one shop owner. Our
results show that a good ranking can be achieved, reflecting the needs of
the shop owner.

1 Introduction

On-line retailers can gain much revenue from cross-selling. For instance, given
that a customer put product A in her shopping basket, a web shop might re-
commend product B, because it is often sold together with A. But what about
other products B’ that are not in the shop’s assortment, but might still sell very
well together with A?

In this work, we consider a situation where multiple providers (competitors)
serve a common market, using a common infrastructure of sales channels. More
specifically, we focus on multiple web shops that are run by the same web shop
platform provider. The platform is capable of collecting data about purchases
made in each web shop. This situation is becoming more common as shop own-
ers outsource the cost of shop maintenance or make their offerings available to
brokers such as price comparison platforms. Examples can be found in many
areas, e.g. portals where users can research and book flight offers of many air-
lines. The example used in our evaluation will be that of multiple web shops
offering IT hard- and software which are run by the same provider.



In such a situation, it becomes possible to gather knowledge about user pref-
erences and co-occurrence of products in shopping baskets across multiple web
shops and use the knowledge to optimise the assortment of each web shop. That
is, based on the knowledge that e.g. the two products A and B sell very well
together in many web shops, a shop that offers only A could use that know-
ledge to infer that it should also offer B. Of course, shop owners must agree to
trade such knowledge to their competitors — but this is probable since benefits
will outweigh the potential losses in most cases. And of course each shop owner
will ponder such recommendations carefully in order to keep focused on their
particular market segment.

Therefore, the objective of this research was to build a recommender system
that can help to optimise the assortment of competing web shops by collecting
cross-sales knowledge across multiple shops. We analysed the requirements for
such a recommender as part of a case study conducted in the above-mentioned
context of IT web shops. We then implemented various variants of a recom-
mender and evaluated them using real data from the case study.

2 Related Work

Our work resembles prior work from several areas:

— Firstly, it shares its goal with various attempts to optimise assortments of
shops. Some of these are based on criteria such as profitability of products,
but not related to cross-selling potentials [14], [8]. Others do look at cross-
selling potentials, but only for one web shop [2], [3]. In [4], the authors look
at specific problems in market basket analysis in multiple shops of the same
retailer.

— Secondly, since our goal is to build a recommender, prior work in recom-
mender systems is relevant. For the area of e-commerce, an overview of
approaches can be found in [11]. As in many other areas, successful recom-
menders are based on collaborative filtering (e.g. [10]), but also association
rule mining has been applied successfully (see [11]).

— Finally, we focus on graph-based recommendation: a graph is a natural way
of representing similarities between users or items and has therefore been
used in several recommender systems, e.g. [9]. Related to our approaches,
researchers have built recommenders based on graph clustering [5] and on
random walks [7], [13]. Random walks are usually biased towards a user:
the score of a recommended item is derived by computing the probability
of reaching the corresponding node via a random walk that starts at (or is
biased towards) products already purchased or liked by the user.

Our problem is different from all previous work since we consider a multiple-
provider setting where we would like to recommend items not to the end users
visiting the shops, but to the web shop providers — but these recommendations
should be based on the preferences of the end users. This introduces an additional
level of complexity (comparing shopping baskets across multiple stores). Our



contribution is hence a study of how to best adapt known approaches to that
modified recommendation problem.

3 Recommendation based on graph analysis

3.1 Analysis of requirements

In order to understand the requirements for an “assortment-optimising recom-
mender”, we studied the case of a web shop platform, on which 21 different web
shops were run. All web shops can build their assortment from a common pool
of products, but most shops offer only a comparatively small selection of items,
depending on the market segment that they address.

We interviewed the providers of the platform and elicited the following re-
quirements for a recommender system:

— The recommender should be able to identify new products for a shop that
sell well together with parts of the existing assortment of the shop. This is
our starting point (see above).

— Besides, the recommender should be able to explain its recommendations.
When recommending a product B, it should list all products A already
offered by a shop that caused the recommendation, e.g. because they were
sold together with B in other shops.

— Finally, the recommender should be able to rank recommended products by
their likelihood of enhancing a shop’s assortment. For this ranking, several
criteria were identified in addition to the likelihood of generating cross-sales
— namely a) a product’s general likelihood of generating revenue, b) the
up-to-dateness of the product and c) the fit with the shop’s assortment in
terms of manufacturer (if a shop sells only products of manufacturer A,
products of other manufacturers might not fit well). This last criterion was
only discovered during the experiments (see below).

Based on these requirements, we built a recommender in several steps, as de-
scribed in the next subsections.

3.2 Notation

First, the situation described in Section 1 is formalised as follows: The platform
on which the web shops are run is described as a set P = (wq, ...w,,) of web shops
w;. A common pool of products (or items) I = (iy, ...,4,) is available from which
each web shop chooses its assortment. Hence, each web shop w; € P is basically
defined as a subset of the product pool w; C I . For simplicity, a purchase b
is a (typically small) subset of a web shop: b C w; for some w; € P — i.e. we
do not care about the quantity of each item that was purchased. The set of all
purchases within a certain timeframe of analysis will be called B.



3.3 Building a product graph

A first step in building the recommenders consists in representing the know-
ledge about item co-occurrence across all web shops via a common product
co-occurrence graph. This is a graph G = (V, E) where the vertices represent
all available items, i.e. V' = I. The set of edges is established by analysing the
co-occurrence of items within all purchases b € B that were recorded within a
given time frame: two items u, v are connected by an undirected edge (u,v) € E
if their joint occurrence in purchases significantly exceeds the number that would
be expected by pure chance, given the individual occurrence frequencies of the
two items. We used the likelihood ratio significance [6] to assign weights to edges
— this significance measure was developed for co-occurrence of words in natural
language sentences. Edges (u,v) € E are weighted by the likelihood ratio sig-
nificance level Ir(u,v). The measure fits well here because the distribution of
products in purchases is similarly skewed (power-law distributed) as the distri-
bution of words in text.

3.4 Graph-based recommendation

Based on the co-occurrence graph G, we developed three variants of a graph-
based recommender. The input of each variant is a web shop w; C V and the
output is a set of items R; that w; is currently not offering (i.e. R;Nw; = @). Each
recommended item r € R; has a score s(r) that is assigned by the recommender.
In all cases, we recommend items that are in close neighbourhood or “easily”
reachable on a path of edges from the vertices w; in graph G.

The first variant will be called the Simple Recommender. It recommends all
items that are adjacent to at least one product already offered by the shop, i.e.
R, ={r e V\wj|3j € w;: (r,j) € E}. The recommended items r are then
scored by the sum of weights of all edges that connect r with any j € w;, i.e.
(1) = X jew, Ir(4,7) (where ir(j,r) > 0 only if (j,r) € E). The leftmost graphic
in Figure 1 illustrates this variant: the items in w; are highlighted in blue and
recommended items r € R; are in yellow/red. We can see that each r € R;
has at least one edge connecting it to a product in w;. The color indicates the
score (yellow = low score, red = high score). Assuming that all edges have equal
weight (for simplicity), we will find that the red-colored node is ranked higher
since it is connected to three nodes j € w; whereas the yellow nodes are adjacent
to one node from w; only. The rationale behind this scoring is that we prefer
items that will cross-sell with many existing products of the shop.

The second variant is based on a biased random walk on the product graph
and will be called the PageRank Recommender. Here, we use PageRank with
priors [12] and for any item j, the prior p; is set to 0 if j ¢ w; and p; = ﬁ for
each j € w;. That is, we bias the random walk towards the initial assortment of
shop w; and hence score a recommended item r by the probability of visiting it
on such a biased random walk. By applying n iterations of the biased PageRank
algorithm, we obtain scores for all items and we include in R; all items with
a PageRank score greater than 0. This is depicted in the middle of Figure 1.



Figure 1. Illustration of the recommender variants Simple (left) PageRank (middle)
and Cluster (right) on the same product graph (colour in on-line proceedings)

Again, the items in w; are in blue and recommended items after two iterations of
PageRank are in yellow/orange/red indicating their scores. Here, a recommended
item will be scored highly if there are many short paths leading from items in
w; to that item.

The third variant uses graph clustering and is hence called the Cluster Recom-
mender: the product co-occurrence graph is clustered via the approach described
in [1], resulting in a set of disjoint clusters C' = (c1, ..., ¢y ), ¢;Ne¢; = 0. In Figure
1 in the rightmost graphic, the cluster membership of a product is indicated by
colors. There are three clusters (orange, blue and green). This recommender in-
cludes all items in R;, which belong to a cluster ¢ € C' that contains at least one of
w;’s products, i.e. R; = Ucecymwﬁé@ ¢\ w;. In Figure 1, the recommended items
from the orange cluster are highlighted (bigger size of node). All recommended

. . m .
items r from the same cluster c; receive the same score, namely s(r) = |CJ|CTI|,
J

i.e. the proportion of the cluster that is already offered in the web shop. In
Figure 1, the recommended orange items receive a score of 0.5 since 3 out of 6
orange items are already in w;. The rationale of this scoring method is that we
prefer clusters that are already well covered by a shop — i.e. that represent well
the market segment addressed by the shop — and that we wish to complete the
shop’s assortment with the yet missing items of these clusters.

Obviously, both the PageRank Recommender and the Cluster Recommender
may recommend items r to a web shop w; that have never been sold together
with any item j € w; whereas this is not possible for the Simple Recommender. In
terms of explanations (see Section 3.1), the Simple Recommender can explain its
recommendations 7 by listing all those j € w; that are connected to r. Similarly,
recommendations r of the Cluster Recommender can be explained by those j €




w; that are in the same cluster as r. For the PageRank Recommender, however,
there are no direct explanations available.

3.5 Ranking function

As mentioned in Section 3.1, the final score of a recommended product should
also reflect other criteria besides s(r). In particular, in accordance with the
gathered requirements, we defined the following additional variables for each
recommended item r:

— The estimated amount of money that web shop w; lost because it did not
offer r, defined by I(r) = price(r) - P(r) - |B;| where B; is the set of all
purchases that happened in web shop w; and P(r) is the maximum likelihood
estimate of r’s probability to be purchased across all web shops (i.e. P(r) =
%). This reflects the general popularity of the item 7.

— The estimated amount of money that the shop w; lost through missed cross-
sales. We estimate this “lost cross-sales” criterion for a recommended item r
by looking at each j € w; that was ever purchased together with r. For each j,
we compute the confidence, i.e. the probability of r being purchased, given
that someone purchases j: conf(j,r) = P(rlj) = %
the amount ¢;(r) lost through missed cross-sales of r related to j can be
calculated by multiplying this probability with the number of times j was
sold in w; and r’s price: ¢;(r) = conf(j,r) - |B]|- price(r) where B] denotes
the set of all purchases of product j within shop w;. Finally, the whole lost
cross-sales amount for is computed as c(r) = >, ¢;(r). Note that this
only works for recommenders that can explain their recommendations, i.e.
for Cluster and Simple recommender; for the PageRank recommender, the
corresponding score is always 0.

— The number of weeks w(r) since r was last sold in any other shop.

— The fit m(r) between r and the shop’s existing assortment in terms of man-

. Hence,

man(r)
ufacturer: m(r) = % where B;" () i the set of all purchase transac-
tions in w; that contained an item produced by the same manufacturer who

produced .

We then used the inverse of w(r) and normalised all scores by mapping them into
the interval [0, 1]. The normalised scores are referred to as s'(r), ¢(r), l'(r), w’(r)
and m/(r). The final ranking function f(r) is a weighted sum of the normalised
scores:

5
f(r) = a1’ (r) + aol'(r) + asc(r) + auw'(r) + asm/(r), Zai =1 (1)

4 Experimental Setup

We have performed a preliminary evaluation of our recommender variants by
applying it to the data of the above-mentioned web shop platform, comprising



21 web shops and purchase data dating back one year from the date of the
experiments. The goal of our evaluation was a) to verify that the recommenders
were able to rank promising items highly and b) to compare the recommenders
against each other and get a first impression on how to configure the ranking
function, i.e. tune the weights in equation 1.

We selected one shop w; and then built a gold standard as follows:

— We generated recommendations for w; both with the Simple Recommender
and with the Cluster Recommender — using weights (rather arbitrarily) of
a1 =04, ay = 0.1, a3 = 0.3, ag = 0.2 and a5 = 0.0' — and then selected
100 items randomly from the union of the two recommendation sets. The
resulting set of items hence contained items with both high and low ranking
function scores and both ones with direct connections to items in w; in the
product graph and ones without such connection. We will call this set our
gold standard Gj.

— We gave the unsorted list of 100 items to the owner of w;, providing also
the scores s'(r), I'(r), w'(r) and ¢/(r) for each recommended item r, and its
explanation (see example in Table 1). We asked the shop owner to state, for
each recommended item 7, whether he considered r a useful extension of his
product assortment (yes or no). We additionally asked for an explanation of
each decision.

Recommendation s'(r)y  U(r) w’(r) ¢ (r) |Explanations
LogiLink Video-/Audio-Adapter|** * * 1. Elgato EyeTV Hybrid + AKG
— DisplayPort/HDMI K317 headset
Kingston Memory DDR3 8GB[**** * HEE K 1. Microsoft Windows 7 Profes-
1600MHz sional SP1, 64Bit
2. Kingston SSDNow V300 - Solid-
State-Disk - 120 GB

Table 1. Example recommendations for our chosen web shop, showing scores and
explanations. Scores have been transformed into star ratings (between 0 and 5 stars).

We then used this gold standard to run different experiments — for each
setting, the recommenders produced a ranked list R; of recommendations, which
was then filtered such that it contained only recommendations r € R; N G;. We
then evaluated the filtered rankings using the measures precision, precision at
rank 20 (P@20), recall and average precision.

5 Results and Discussion

We first analysed the explanations that the shop owner gave regarding each
decision to either accept or reject a recommendation s(r), especially focusing on
those cases where the recommendation was rejected — which concerned 40 out of

! Note that as was 0 because we only discovered the “manufacturer fit” criterion
during the experiments (see Section 5 below).



the 100 items in the gold standard. Since the gold standard was built such as to
include also items with low scores, it is no surprise that a large portion of them
was rejected — this was actually even intended in order to allow an analysis of
rejection reasons. The explanations given by the shop owner were free text, we
hence needed to code them. We thus found the following reasons for rejection of
recommendations:

1. Product does not fit well because of manufacturer (and/or web shop owner
has exclusive contracts with other manufacturers): 11 mentions

2. Web shop owner believes that there is no demand for the product in his
addressed market segment: 8 mentions

3. Product is considered too expensive: 7 mentions

4. The manufacturer does not offer good conditions (would need to order large
quantities): 6

5. The product does not fit the addressed market segment: 4 mentions

6. Product is outdated: 2 mentions

The analysis shows that most rejection criteria are covered by our ranking func-
tion: outdated products (reason 6) and ones that do not fit the addressed market
segment (reason 5) should be ranked down by criteria w(r) (number of weeks
since recommendation r was last sold) and s(r) (initial score of the recom-
mender), respectively. Similarly, missing demand (reason 2) should be covered
by I(r), i.e. the estimated revenue lost by not offering r. For covering reason 1,
we introduced additionally the “manufacturer fit” ranking criterion m(r).

We can also see that not all rejection criteria were covered by our ranking
function — i.e. it seemed that our requirements analysis (see Section 3.1) was
incomplete. However, reasons 3 and 4 (product too expensive or no good con-
ditions available from manufacturer) are hardly reflected in our purchase data
(although one may argue that reason 4 is partially covered by ranking criterion
m(r)). We hence did not further adapt the ranking function.

In a second step, we ran all three recommender variants on our gold standard.
For each variant, we tuned the weight vector @ = (a1, @, a3, g, a5) with a brute
force approach: we generated all possible vectors by varying each a; between 0
and 1 with a step width of 0.05, but only considering those o where > a; = 1,
resulting in 9697 different a. The results of the best runs for each recommender
variant are shown in Table 2.

Recommender |best o AP P@20 P R
Simple (03,02, 02,00, 0.3) [0.7946 1.0 0.63  0.87
PageRank (0.25, 0.2, 0.3, 0.0, 0.25) |0.8573 1.0 0.61 1.0
Cluster (0.0, 0.2, 0.4, 0.0, 0.4) 0.7041 0.95 0.58 0.82

Table 2. Results of applying recommender variants to the gold standard, measures in
average precision (AP), precision at rank 20 (P@20), precision (P) and recall (R).

We first notice that all runs achieve a very good precision at rank 20 (P@20),
indicating that it is indeed possible to tune the recommender such that its top-
ranked recommendations are perceived as useful by the shop owner.



When comparing recommender variants, we notice that the Cluster Recom-
mender has suboptimal results, inferior to the others in terms of all evaluation
measures. The PageRank recommender has a higher average precision and re-
call than the Simple Recommender, yet scores slightly lower on precision. This
is not surprising since the Simple Recommender is not able to retrieve any re-
commendations that are not directly connected to a j € w; — hence necessarily
has lower recall. Overall, the PageRank recommender seems to deliver the best
performance.

Finally, we look at the optimal weight vector ac. When we focus on the
PageRank Recommender, we find that the only criterion that does not seem to
play a role is w(r), i.e. the number of weeks since a recommended item was last
sold (actually, we find that ay = 0 across all recommender variants). This is
quite consistent with the qualitative analysis above that showed only two cases
where a recommendation was rejected because it was perceived as outdated.
The importance of the other criteria is roughly balanced, also consistent with
the qualitative analysis. Of course, this analysis is only valid for one shop and its
strategy — we expect to derive different optimal weight vectors for other shops.
But the example shows that it seems possible to adapt the recommender to the
needs of a shop owner.

6 Conclusions

In this work, we have considered the situation of a platform through which
several (competing) providers offer products (or services) to end users. Our goal
was to recommend portfolio optimisations to those providers, based on user pref-
erences. More specifically, we propose to analyse co-occurrence of products in
shopping baskets across multiple shops (providers) and use the derived informa-
tion to recommend additional products with cross-selling potential to complete
the existing assortment of the shop. We have introduced a common product co-
occurrence graph to capture cross-selling knowledge across providers and, based
on that graph, derived adaptations of several graph-based recommendation al-
gorithms to our new problem. These were combined with other ranking criteria
— that we derived from interviews with the providers of a web shop platform —
into a final ranking function to be used for ranking recommended items.

We have experimentally verified the approach in a preliminary evaluation,
building a gold standard in cooperation with a shop owner. Our results show
that the recommender variants are capable of ranking good recommendations
highly. The recommender based on random walks on the product graph achieved
the best performance. The results also indicate that the additional criteria that
our ranking function comprises are useful and that it is possible to tune the
corresponding weights to meet the needs of the shop owner.

In the future, we would like to work with a larger sample of shops to verify
our findings. And we would like to measure the actual (cross) sales achieved by
adding recommended items to a shop instead of using the subjective judgment
of the shop owner for evaluation.
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