
31IMVS Fokus Report 2013

Parsing Graphs: Applying Parser
Combinators to Graph Traversals1

Connected data such as social networks or business process interactions are frequently modeled as
graphs, and increasingly often, stored in graph databases. In contrast to relational databases where SQL
is the proven query language, there is no established counterpart for graph databases. One way to explore
and extract data from a graph database is to specify the structure of paths (partial traversals) through the
graph. We show how such traversals can be expressed by combining graph navigation primitives with
familiar grammar constructions such as sequencing, choice and repetition – essentially applying the idea
of parser combinators to graph traversals. The result is trails, a Scala combinator library that provides an
implementation for the neo4j graph database and for the generic graph API blueprints.

Daniel Kröni, Raphael Schweizer | daniel.kroeni@fhnw.ch

Enter the tangled world of Carol where everything
centers on friendship and pets. The graph in Fig-
ure 1 shows four people, their relationships and
their pets.

1Carol has a dog and now she is thinking about
a cute name. Of course the name should be unique,
at least within her circle of friends. She asks her-
self: “What names did my friends and their friends
etc. give their pets?” Here is how she would state
that same question after having read this paper:

val friends = V("Carol") ~ (out-
("loves") | out("likes")).+
val petNames =
 friends ~> out("pet") ^^
 get[String]("name")

This code defines a traversal through the given
graph by specifying the “grammar” of the paths to
be followed. It consists of graph navigation steps
(V, out) and combinators (~, ~>, |, +). Applying pet-
Names yields four results:

(Carol -likes-> Dave -pet-> Fluffy, “Fluffy”)
(Carol -loves-> Bob -pet-> Murphy, “Murphy”)
(Carol -loves-> Bob -likes-> Carol -likes->

 Dave -pet-> Fluffy, "Fluffy")
(Carol -loves-> Bob -loves-> Alice -loves->

 Bob -pet-> Murphy, “Murphy”)

Each result contains the full path of the travers-
al plus a designated value, in our case, the name
property of the pet. In this paper we describe how
this works:
• We develop the datatype of a graph traverser.
• We describe a set of functions that allows us to

combine graph navigation primitives into ex-
pressive traversal descriptions.

1 Die Originalversion dieses Artikels erschien in den Pro-
ceedings of the 4th Workshop on Scala, ECOOP '13, Montpel-
lier, Juli 2013

• We extend the library by cycle detection, label-
ing functionality and subqueries to allow even
more elegant traversals.

Graph Traversal Combinators
Step-by-step we develop a graph traversal library.
First we shape the type of a traverser. In a first
approximation, a traverser Tr

5
 is a function that

takes a graph as the input and returns a path as
the result. Path is a list of graph elements that al-
ternate between nodes and edges.
type Tr5 = Graph => Path

There may be more than one path that fits the
specification of a traverser – or none at all. We ac-
count for this by letting the result be a Stream of
paths, as proposed by Wadler [3]. Stream allows
us to lazily yield result paths on demand rather
than to eagerly compute all results.
type Tr4 = Graph => Stream[Path]

A traverser may start with an empty path, but
usually it describes an extension of the preceding
path. To model this scenario we extend the type of
traverser and add the preceding path as a further
input parameter:
type Tr3 = Graph => Path => Stream[Path]

In the end, a traverser might return an arbitrary
value besides the path, for example, the value of a
property:
type Tr2[+A] = Graph => Path
 => Stream[(Path,A)]

Figure1 : Carol’s World, a small example graph

32 IMVS Fokus Report 2013

There is no reason to restrict Tr
2
 to Graph and

Path. We will see that a traverser may read from
any environment E, it may transform some state S
and it may yield potentially multiple results:

type Tr1[-E,S,+A] = E => S
 => Stream[(S,A)]

In this sense, it is a very general structure. In fact,
Hutton's and Meijer's monadic parsers [1] are us-
ing this type for parsing strings. This is because a
List[Char] is a graph:

When parsing text, the state is the string being
consumed. In contrast, when traversing a graph,
we build up the path, which is the sequence of vis-
ited nodes and edges. Depending on the head of a
path there are different steps we can next take. On
an edge, for example, it makes no sense to ask for
outgoing edges which are only available on nodes.

To accommodate this fact, we differentiate be-
tween the input state type I and the output state
type O. This allows us to statically express wheth-
er a traverser expects a node or an edge and there-
by rejecting meaningless patterns during compi-
lation.

type Tr[-E,-I,+O,+A] = E
 => I => Stream[(O,A)]

The above is the type of traversers we will use in
the following discussion. It is worth noting that it
combines three well known monads:
• Nondeterminism: The multiple results of a tra-

verser, represented as a Stream.
• Indexed-State: The state which is threaded

through – potentially changing its type from
I to O.

• Reader: The read-only environment E which is
passed to each traverser.

Given the type Tr, we can explore primitive graph
navigation traversers as well as grammar-like
combinators.

Traverser Primitives
The two most basic traversers are success and
fail. success creates a traverser that always suc-
ceeds with the given value a, leaving the state un-
touched. fail is a traverser that contains no results
– a dead end, which allows no further traversal:

def success[E,S,A](a: A): Tr[E,S,S,A] =
 _ => s => Stream((s,a))
def fail[E,S,A]: Tr[E,S,S,A] =
 _ => _ => Stream()

In a similar fashion, we define the three travers-
ers getEnv to read the environment, getState to
read the state, and setState to write the state. Be-
low are their signatures:

def getEnv[E, S]: Tr[E, S, S, E]
def getState[E, S]: Tr[E, S, S, S]
def setState[E, I, O](o: O):
 Tr[E, I, O, Unit]

Until now, the presented traversers have not been
specific to graph traversal but were primitive
building blocks for more specific traversers. We
will now focus on the graph-specific navigation
traversers for directed graphs which consist of
nodes and edges, each with associated key-val-
ue pairs. The environment and its corresponding
graph-element types are fixed to an implemen-
tation-dependent graph API. The accompanying
state carries the type of the head of its path2 as a
phantom type:

import org.neo4j.{graphdb => neo4j}
type GraphAPI =
 neo4j.GraphDatabaseService
type Elem = neo4j.PropertyContainer
type Node <: Elem = neo4j.Node
type Edge <: Elem = neo4j.Relationship
case class State[+Head <: Elem]
 (path: List[Elem])

To navigate the graph we propose a few primi-
tives whose names are borrowed from Gremlin [9].
Navigation primitives extend their input path by
appending the elements they yield. The following
traversers need to be implemented for each spe-
cific graph database:

Function Description

V, V(id) all nodes, node identified by id

E, E(id) all edges, edge identified by id

outE, outE(t) all out-edges, out-edges with tag t (3)

inE, inE(t) all in-edges, in-edges with tag t (3)

outV, inV start node, end node of an edge

As an example, we will look at outE's function sig-
nature:

def outE(tagName: String):
 Tr[GraphAPI,State[Node],State[Edge],
 Edge]

which has the following expanded return type:

GraphAPI => State[Node]
 => Stream[(State[Edge],Edge)]

This function takes a graph and a path that ends
in a Node and from there it steps onto all outgoing
edges with the given tagName. This leads to paths
which end in an Edge. Together, this edge is then
returned with the extended path.

In order to access properties on nodes and edg-
es, the function get must be implemented as well:

def get[A](key: String)(e: Elem): A

These primitives will be combined into powerful
traversal definitions.
2 In principle, it is sufficient to track only the current positi-
on in the graph, however, we are often interested in the trace.
3 neo4j and blueprints support tagged edges, in contrast to
untagged nodes.

33IMVS Fokus Report 2013

Traverser Combinators
We now want to combine these primitive travers-
ers into complex path expressions, which results
again in traversers. This property is a key to their
compositional nature.

The following table shows the name of those
combinators as well as the sugar we provide to
concisely express traversals:

Function Sugar Description

seq a ~ b First a then b

choice a | b Follow both branches

opt a.? Repeat 0..1

many a.* Repeat 0..n

many1 a.+ Repeat 1..n

flatMap is used to sequentially combine any two
traversers. It passes through the same environ-
ment to both traversers, threads the state through
the first traverser into the second one and returns
the final states together with the results:

def flatMap[E,I,M,O,A,B](tr: =>
Tr[E,I,M,A])(f: A => Tr[E,M,O,B]):
Tr[E,I,O,B] =
 e => i => tr(e)(i).flatMap {
 case (m,a) => f(a)(e)(m)
 }

Note that the inner flatMap is called on Stream,
and how the different input and output state types
I, M and O line up – from [_,I,M,_] and [_,M,O,_] to
[_,I,O,_]. To allow recursive definitions, all com-
binators take their traverser arguments by-name.

Tr together with flatMap and success becomes
a structure that is slightly more general than mo-
nadic, due to the state types [4]. Luckily, Scala's
for-comprehension does not worry about this.

Now map and filter, using flatMap, success
and fail, can be implemented as follows:

def map[E,I,O,A,B](tr: => Tr[E,I,O,A])
 (f: A => B): Tr[E,I,O,B] =
 flatMap(tr)(a => success(f(a)))

def filter[E,I,O,A](tr: => Tr[E,I,O,A])
 (f: A => Boolean): Tr[E,I,O,A] =
 flatMap(tr)(a => if(f(a))
 success(a) else fail)

There is another, less powerful but often suffi-
cient way to sequentially combine two traversers.
seq does not use the result of the first traverser
to obtain the subsequent traverser as in flatMap
but simply returns both values in a fancy-looking
tuple named ~:

case class ~[+A,+B](a: A, b: B)

def seq[E,I,M,O,A,B](fst: => Tr[E,I,M,A],
 snd: => Tr[E,M,O,B]): Tr[E,I,O,A~B] =
 for(a <- fst; b <- snd)
 yield new ~(a,b)

The related functions ~, ~> and <~ return the
whole tuple, the right-hand-side and the left-hand

side. These functions as well as the infix sugar for
map ̂ ^ are courtesy of Scala's parser combinators
[2, 727-755]. They allow the writing of good-look-
ing sequential compositions of traversers such as
out which first navigates from a node to an outgo-
ing edge and from there to the target node:

def out(tagName: String)
 : Tr[GraphAPI,State[Node],State[Node],
Node] = outE(tagName) ~> inV()

In addition to the above sequencing function, a
means is needed to express branching: choice.
Since we are interested in all matching result
paths this combinator follows both arguments us-
ing the same state and concatenates (#:::) their re-
sults. This is different to typical combinator pars-
ers which for reason of speed often try the second
alternative only if the first one fails:

def choice[E,I,O,A](
 either: => Tr[E,I,O,A],
 or: => Tr[E,I,O,A]): Tr[E,I,O,A] =
 e => i => either(e)(i) #::: or(e)(i)

Now we have all the ingredients to implement opt,
many and many1. Note that they restrict their
argument traverser to start and end on the same
state type S. The implementations are straight
forward:

def opt[E,S,A](tr: => Tr[E,S,S,A])
 : Tr[E,S,S,Option[A]] =
 choice(success(None),
 map(tr)(Some[A](_)))

def many[E,S,A](tr: => Tr[E,S,S,A])
 : Tr[E,S,S,Stream[A]] =
 choice(success(Stream()), many1(tr))

def many1[E,S,A](tr: => Tr[E,S,S,A])
 : Tr[E,S,S,Stream[A]] =
 for(a <- tr; as <- many(tr))
 yield a #:: as

This concludes the basic functionality of our
graph traversal combinators. Improvements to
this minimalistic design are discussed in the fur-
ther sections. We make our traversers cycle-aware
and add the ability to label values, which can then
be referred to in queries. Finally we show how to
implement subqueries.

Cycle Detection
Consider the following traverser:

V("Alice") ~> (out("loves")
| out("likes")).+

Since there is no inherent ordering of the edges, a
possible sequence of result paths could look like
this:

Alice -loves-> Bob
Alice -loves-> Bob -loves-> Alice

34 IMVS Fokus Report 2013

Alice -loves-> Bob -loves-> Alice -loves-> Bob
…

The given implementation would never stop gen-
erating longer and longer expansions of the cycle
and never yield the following path: Alice -likes->
Carol.

Note that the queried graph does not need
to contain cycles: e.g. (out(“pet”) ~ in(“pet”)).+ is
problematic by itself.

In general the application of many and many1
may cause problems. Clearly this behavior is un-
desirable. Cycles should be detected and handled
appropriately. Our implementation adheres to the
following definition: If, within an application4 of
many or many1 , the repeated traverser yields the
same snippet a second time, then it is a cycle. Con-
sistent with our definition this path, Carol -loves->
Bob -loves-> Alice -likes-> Carol -loves-> Bob -pet->
Murphy, is discarded from the result mentioned in
the introduction due to the repeated -loves-> Bob
snippet.

Detecting cycles requires the snippets to be
tracked, therefore we extend the state:

case class State[+Head <: Elem]
 (path: List[Elem],
 cycles: Set[List[Elem]])

For the sake of simplicity our implementation fol-
lows cycles only once, which might be returned as
part of the result as well.

Labels
As a further extension, we allow the values that
are emitted by a traverser to be labeled. This
requires additional state of type Map[String,List
[Any]] which maps a label to a list of values. Why
use a list of values and not just a single value? The
answer is that labeling inside a repetition might
produce more than one value, or perhaps none at
all.

For example an application of labels is looking
for unhappy lovers – people who love another per-
son but that person does not return this love:

val unhappyLovers = for {
 beloved <- V.as("lvr") ~
 out("loves") ~> out("loves")
 lover <- label("lvr") if
 !lover.contains(beloved)
} yield lover

Executing this query on the introductory graph
yields the single node Carol.

Subqueries
The last extension we implement are subqueries.
Essentially subqueries are traversers whose val-
ues are preserved while their state changes are
discarded. Thus subqueries allow to “match” pat-

4 Top-level applications only, not mutual recursive calls.

terns without having the matched paths polluting
the result. Here is the definition of sub which runs
its argument tr as a subquery and in turn yields
the stream of tr's results:

def sub[E,I,O,A](tr: Tr[E,I,O,A])
 : Tr[E,I,I,Stream[A]] =
 e => i => Stream((i, tr(e)
 (i).map(_._2)))

Using sub we can search for beloved pet owners:

val belovedPetOwners = for {
 petOwner <- V
 pets <- sub(out("pet"))
 if pets.nonEmpty
 lover <- in("loves")
} yield (petOwner, lover)

This yields (Carol -loves-> Bob, (Bob, Carol)) and
(Alice -loves-> Bob, (Bob, Alice)). Note that the pets
do not show up in the result.

Conclusion and Related Work
We have developed a simple combinator library to
concisely express graph traversals. It is current-
ly being evaluated and extended in the context of
a business intelligence project [10]. Ongoing work
can be observed on the trails webpage [6].

To access information stored in graph data-
bases we have found low-level APIs, imperative,
embedded graph traversal languages such as the
Gremlin family [9] and declarative approaches e.g.
Cypher [11] or SPARQL [12]. While others stress ex-
pressiveness or good computational complexity [5]
trails focuses on simplicity – in terms of an educa-
tive value, implementation and application.

References
[1] G. Hutton & E. Meijer. Monadic parser combinators, 1996.

[2] M. Odersky, L. Spoon, and B. Venners. Programming in

Scala: A Comprehensive Step-by-Step Guide. Artima Inc.,

2nd edition, 2010.

[3] P. Wadler. How to replace failure by a list of successes. In

Conference on Functional Programming Languages and

Computer Architecture, pages 113--128, New York, NY,

USA, 1985. Springer-Verlag New York, Inc.

[4] P. Wadler. Monads and composable continuations. LISP

and Symbolic Computation, 7(1):39--55, jan 1994.

[5] P. T. Wood. Query languages for graph databases.

SIGMOD Record, 41(1):50--60, 2012.

[6] http://www.github.com/danielkroeni/trails, 2013.

[7] http://www.neo4j.org, 2013.

[8] http://blueprints.tinkerpop.com/, 2013.

[9] http://gremlin.tinkerpop.com/, 2013.

[10] http://www.fhnw.ch/technik/imvs/forschung/projekte/

babefisch/babelfish, 2013.

[11] http://docs.neo4j.org/chunked/stable/

cypher-query-lang.html, 2013.

[12] http://www.w3.org/TR/rdf-sparql-query, 2013.

