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Parsing Graphs: Applying Parser 
Combinators to Graph Traversals1

Connected data such as social networks or business process interactions are frequently modeled as 
graphs, and increasingly often, stored in graph databases. In contrast to relational databases where SQL 
is the proven query language, there is no established counterpart for graph databases. One way to explore 
and extract data from a graph database is to specify the structure of paths (partial traversals) through the 
graph. We show how such traversals can be expressed by combining graph navigation primitives with 
familiar grammar constructions such as sequencing, choice and repetition – essentially applying the idea 
of parser combinators to graph traversals. The result is trails, a Scala combinator library that provides an 
implementation for the neo4j graph database and for the generic graph API blueprints.

Daniel Kröni, Raphael Schweizer | daniel.kroeni@fhnw.ch

Enter the tangled world of Carol where everything 
centers on friendship and pets. The graph in Fig-
ure 1 shows four people, their relationships and 
their pets.

1Carol has a dog and now she is thinking about 
a cute name. Of course the name should be unique, 
at least within her circle of friends. She asks her-
self: “What names did my friends and their friends 
etc. give their pets?” Here is how she would state 
that same question after having read this paper:

val friends = V("Carol") ~ (out-
("loves") | out("likes")).+
val petNames =
 friends ~> out("pet") ^^
 get[String]("name")

This code defines a traversal through the given 
graph by specifying the “grammar” of the paths to 
be followed. It consists of graph navigation steps 
(V, out) and combinators (~, ~>, |, +). Applying pet-
Names yields four results:

(Carol -likes-> Dave -pet-> Fluffy, “Fluffy”)
(Carol -loves-> Bob -pet-> Murphy, “Murphy”)
(Carol -loves-> Bob -likes-> Carol -likes->  

 Dave -pet-> Fluffy, "Fluffy")
(Carol -loves-> Bob -loves-> Alice -loves->  

 Bob -pet-> Murphy, “Murphy”)

Each result contains the full path of the travers-
al plus a designated value, in our case, the name 
property of the pet. In this paper we describe how 
this works:
• We develop the datatype of a graph traverser.
• We describe a set of functions that allows us to 

combine graph navigation primitives into ex-
pressive traversal descriptions.

1 Die Originalversion dieses Artikels erschien in den Pro-
ceedings of the 4th Workshop on Scala, ECOOP '13, Montpel-
lier, Juli 2013

• We extend the library by cycle detection, label-
ing functionality and subqueries to allow even 
more elegant traversals.

Graph Traversal Combinators
Step-by-step we develop a graph traversal library. 
First we shape the type of a traverser. In a first 
approximation, a traverser Tr

5
 is a function that 

takes a graph as the input and returns a path as 
the result. Path is a list of graph elements that al-
ternate between nodes and edges.
type Tr5 = Graph => Path

There may be more than one path that fits the 
specification of a traverser – or none at all. We ac-
count for this by letting the result be a Stream of 
paths, as proposed by Wadler [3]. Stream allows 
us to lazily yield result paths on demand rather 
than to eagerly compute all results.
type Tr4 = Graph => Stream[Path]

A traverser may start with an empty path, but 
usually it describes an extension of the preceding 
path. To model this scenario we extend the type of 
traverser and add the preceding path as a further 
input parameter:
type Tr3 = Graph => Path => Stream[Path]

In the end, a traverser might return an arbitrary 
value besides the path, for example, the value of a 
property:
type Tr2[+A] = Graph => Path
 => Stream[(Path,A)]

Figure1 : Carol’s World, a small example graph
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There is no reason to restrict Tr
2
 to Graph and 

Path. We will see that a traverser may read from 
any environment E, it may transform some state S 
and it may yield potentially multiple results:

type Tr1[-E,S,+A] = E => S
 => Stream[(S,A)]

In this sense, it is a very general structure. In fact, 
Hutton's and Meijer's monadic parsers [1] are us-
ing this type for parsing strings. This is because a 
List[Char] is a graph:

When parsing text, the state is the string being 
consumed. In contrast, when traversing a graph, 
we build up the path, which is the sequence of vis-
ited nodes and edges. Depending on the head of a 
path there are different steps we can next take. On 
an edge, for example, it makes no sense to ask for 
outgoing edges which are only available on nodes.

To accommodate this fact, we differentiate be-
tween the input state type I and the output state 
type O. This allows us to statically express wheth-
er a traverser expects a node or an edge and there-
by rejecting meaningless patterns during compi-
lation.

type Tr[-E,-I,+O,+A] = E
 => I => Stream[(O,A)]

The above is the type of traversers we will use in 
the following discussion. It is worth noting that it 
combines three well known monads:
• Nondeterminism: The multiple results of a tra-

verser, represented as a Stream.
• Indexed-State: The state which is threaded 

through – potentially changing its type from 
I to O.

• Reader: The read-only environment E which is 
passed to each traverser.

Given the type Tr, we can explore primitive graph 
navigation traversers as well as grammar-like 
combinators.

Traverser Primitives
The two most basic traversers are success and 
fail. success creates a traverser that always suc-
ceeds with the given value a, leaving the state un-
touched. fail is a traverser that contains no results 
– a dead end, which allows no further traversal:

def success[E,S,A](a: A): Tr[E,S,S,A] =
 _ => s => Stream((s,a))
def fail[E,S,A]: Tr[E,S,S,A] = 
 _ => _ => Stream()

In a similar fashion, we define the three travers-
ers getEnv to read the environment, getState to 
read the state, and setState to write the state. Be-
low are their signatures:

def getEnv[E, S]: Tr[E, S, S, E]
def getState[E, S]: Tr[E, S, S, S]
def setState[E, I, O](o: O):
 Tr[E, I, O, Unit]

Until now, the presented traversers have not been 
specific to graph traversal but were primitive 
building blocks for more specific traversers. We 
will now focus on the graph-specific navigation 
traversers for directed graphs which consist of 
nodes and edges, each with associated key-val-
ue pairs. The environment and its corresponding 
graph-element types are fixed to an implemen-
tation-dependent graph API. The accompanying 
state carries the type of the head of its path2 as a 
phantom type:

import org.neo4j.{graphdb => neo4j}
type GraphAPI = 
 neo4j.GraphDatabaseService
type Elem = neo4j.PropertyContainer
type Node <: Elem = neo4j.Node
type Edge <: Elem = neo4j.Relationship
case class State[+Head <: Elem]
 (path: List[Elem])

To navigate the graph we propose a few primi-
tives whose names are borrowed from Gremlin [9]. 
Navigation primitives extend their input path by 
appending the elements they yield. The following 
traversers need to be implemented for each spe-
cific graph database:

Function Description

V, V(id) all nodes, node identified by id

E, E(id) all edges, edge identified by id

outE, outE(t) all out-edges, out-edges with tag t (3)

inE, inE(t) all in-edges, in-edges with tag t (3)

outV, inV start node, end node of an edge

As an example, we will look at outE's function sig-
nature:

def outE(tagName: String):  
 Tr[GraphAPI,State[Node],State[Edge],
 Edge]

which has the following expanded return type:

GraphAPI => State[Node] 
 => Stream[(State[Edge],Edge)]

This function takes a graph and a path that ends 
in a Node and from there it steps onto all outgoing 
edges with the given tagName. This leads to paths 
which end in an Edge. Together, this edge is then 
returned with the extended path.

In order to access properties on nodes and edg-
es, the function get must be implemented as well:

def get[A](key: String)(e: Elem): A

These primitives will be combined into powerful 
traversal definitions.
2 In principle, it is sufficient to track only the current positi-
on in the graph, however, we are often interested in the trace.
3 neo4j and blueprints support tagged edges, in contrast to 
untagged nodes.
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Traverser Combinators
We now want to combine these primitive travers-
ers into complex path expressions, which results 
again in traversers. This property is a key to their 
compositional nature.

The following table shows the name of those 
combinators as well as the sugar we provide to 
concisely express traversals:

Function Sugar Description

seq a ~ b First a then b

choice a | b Follow both branches

opt a.? Repeat 0..1

many a.* Repeat 0..n

many1 a.+ Repeat 1..n

flatMap is used to sequentially combine any two 
traversers. It passes through the same environ-
ment to both traversers, threads the state through 
the first traverser into the second one and returns 
the final states together with the results:

def flatMap[E,I,M,O,A,B](tr: => 
Tr[E,I,M,A])(f: A => Tr[E,M,O,B]): 
Tr[E,I,O,B] =
  e => i => tr(e)(i).flatMap { 
  case (m,a) => f(a)(e)(m) 
 }

Note that the inner flatMap is called on Stream, 
and how the different input and output state types 
I, M and O line up – from [_,I,M,_] and [_,M,O,_] to 
[_,I,O,_]. To allow recursive definitions, all com-
binators take their traverser arguments by-name.

Tr together with flatMap and success becomes 
a structure that is slightly more general than mo-
nadic, due to the state types [4]. Luckily, Scala's 
for-comprehension does not worry about this.

Now map and filter, using flatMap, success 
and fail, can be implemented as follows:

def map[E,I,O,A,B](tr: => Tr[E,I,O,A])
 (f: A => B): Tr[E,I,O,B] =
 flatMap(tr)(a => success(f(a)))

def filter[E,I,O,A](tr: => Tr[E,I,O,A])
 (f: A => Boolean): Tr[E,I,O,A] =
 flatMap(tr)(a => if(f(a))
 success(a) else fail)

There is another, less powerful but often suffi-
cient way to sequentially combine two traversers. 
seq does not use the result of the first traverser 
to obtain the subsequent traverser as in flatMap 
but simply returns both values in a fancy-looking 
tuple named ~:

case class ~[+A,+B](a: A, b: B)

def seq[E,I,M,O,A,B](fst: => Tr[E,I,M,A], 
 snd: => Tr[E,M,O,B]): Tr[E,I,O,A~B] =
  for(a <- fst; b <- snd)
 yield new ~(a,b)

The related functions ~, ~> and <~ return the 
whole tuple, the right-hand-side and the left-hand 

side. These functions as well as the infix sugar for 
map ̂ ^ are courtesy of Scala's parser combinators 
[2, 727-755]. They allow the writing of good-look-
ing sequential compositions of traversers such as 
out which first navigates from a node to an outgo-
ing edge and from there to the target node:

def out(tagName: String)
 : Tr[GraphAPI,State[Node],State[Node], 
Node] = outE(tagName) ~> inV()

In addition to the above sequencing function, a 
means is needed to express branching: choice. 
Since we are interested in all matching result 
paths this combinator follows both arguments us-
ing the same state and concatenates (#:::) their re-
sults. This is different to typical combinator pars-
ers which for reason of speed often try the second 
alternative only if the first one fails:

def choice[E,I,O,A](
 either: => Tr[E,I,O,A], 
 or: => Tr[E,I,O,A]): Tr[E,I,O,A] =
 e => i => either(e)(i) #::: or(e)(i)

Now we have all the ingredients to implement opt, 
many and many1. Note that they restrict their 
argument traverser to start and end on the same 
state type S. The implementations are straight 
forward:

def opt[E,S,A](tr: => Tr[E,S,S,A])
 : Tr[E,S,S,Option[A]] =
  choice(success(None),
 map(tr)(Some[A](_)))

def many[E,S,A](tr: => Tr[E,S,S,A])
 : Tr[E,S,S,Stream[A]] =
 choice(success(Stream()), many1(tr))

def many1[E,S,A](tr: => Tr[E,S,S,A])
 : Tr[E,S,S,Stream[A]] =
  for(a <- tr; as <- many(tr))
 yield a #:: as

This concludes the basic functionality of our 
graph traversal combinators. Improvements to 
this minimalistic design are discussed in the fur-
ther sections. We make our traversers cycle-aware 
and add the ability to label values, which can then 
be referred to in queries. Finally we show how to 
implement subqueries.

Cycle Detection
Consider the following traverser:

V("Alice") ~> (out("loves") 
| out("likes")).+

Since there is no inherent ordering of the edges, a 
possible sequence of result paths could look like 
this:

Alice -loves-> Bob
Alice -loves-> Bob -loves-> Alice
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Alice -loves-> Bob -loves-> Alice -loves-> Bob
…

The given implementation would never stop gen-
erating longer and longer expansions of the cycle 
and never yield the following path: Alice -likes-> 
Carol.

Note that the queried graph does not need 
to contain cycles: e.g. (out(“pet”) ~ in(“pet”)).+ is 
problematic by itself.

In general the application of many and many1 
may cause problems. Clearly this behavior is un-
desirable. Cycles should be detected and handled 
appropriately. Our implementation adheres to the 
following definition: If, within an application4  of 
many or many1 , the repeated traverser yields the 
same snippet a second time, then it is a cycle. Con-
sistent with our definition this path, Carol -loves-> 
Bob -loves-> Alice -likes-> Carol -loves-> Bob -pet-> 
Murphy, is discarded from the result mentioned in 
the introduction due to the repeated -loves-> Bob 
snippet.

Detecting cycles requires the snippets to be 
tracked, therefore we extend the state:

case class State[+Head <: Elem]
 (path: List[Elem], 
 cycles: Set[List[Elem]])

For the sake of simplicity our implementation fol-
lows cycles only once, which might be returned as 
part of the result as well.

Labels
As a further extension, we allow the values that 
are emitted by a traverser to be labeled. This  
requires additional state of type Map[String,List 
[Any]] which maps a label to a list of values. Why 
use a list of values and not just a single value? The 
answer is that labeling inside a repetition might 
produce more than one value, or perhaps none at 
all.

For example an application of labels is looking 
for unhappy lovers – people who love another per-
son but that person does not return this love:

val unhappyLovers = for {
  beloved <- V.as("lvr") ~ 
 out("loves") ~> out("loves")
  lover <- label("lvr") if
 !lover.contains(beloved)
} yield lover

Executing this query on the introductory graph 
yields the single node Carol.

Subqueries
The last extension we implement are subqueries. 
Essentially subqueries are traversers whose val-
ues are preserved while their state changes are 
discarded. Thus subqueries allow to “match” pat-

4 Top-level applications only, not mutual recursive calls.

terns without having the matched paths polluting 
the result. Here is the definition of sub which runs 
its argument tr as a subquery and in turn yields 
the stream of tr's results:

def sub[E,I,O,A](tr: Tr[E,I,O,A])
 : Tr[E,I,I,Stream[A]] =
  e => i => Stream((i, tr(e)
 (i).map(_._2)))

Using sub we can search for beloved pet owners:

val belovedPetOwners = for {
  petOwner <- V
  pets <- sub(out("pet"))
 if pets.nonEmpty
  lover <- in("loves")
} yield (petOwner, lover)

This yields (Carol -loves-> Bob, (Bob, Carol)) and 
(Alice -loves-> Bob, (Bob, Alice)). Note that the pets 
do not show up in the result.

Conclusion and Related Work
We have developed a simple combinator library to 
concisely express graph traversals. It is current-
ly being evaluated and extended in the context of 
a business intelligence project [10]. Ongoing work 
can be observed on the trails webpage [6].

To access information stored in graph data-
bases we have found low-level APIs, imperative, 
embedded graph traversal languages such as the 
Gremlin family [9] and declarative approaches e.g. 
Cypher [11] or SPARQL [12]. While others stress ex-
pressiveness or good computational complexity [5] 
trails focuses on simplicity – in terms of an educa-
tive value, implementation and application.
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