Auflistung nach Autor:in "Crosier, Jonathan"
Gerade angezeigt 1 - 4 von 4
Treffer pro Seite
Sortieroptionen
- PublikationChemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch(Copernicus, 31.01.2008) Cozic, Julie; Verheggen, Bart; Weingartner, Ernest; Crosier, Jonathan; Bower, Keith N.; Flynn, Michael; Coe, Hugh; Henning, Silvia; Steinbacher, Martin; Henne, Stephan; Collaud Coen, Martine; Petzold, Andreas; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]The chemical composition of submicron (fine mode) and supermicron (coarse mode) aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland) as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol) and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants). In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC) to particulate organic matter (OM) was found in winter (February–March 2005). Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE) than without SDE.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationHygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland(Copernicus, 30.09.2008) Sjögren, Staffan; Gysel, Martin; Weingartner, Ernest; Alfarra, M. Rami; Duplissy, Jonathan; Cozic, Julie; Crosier, Jonathan; Coe, Hugh; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA) during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (GF, i.e. the relative change in particle diameter from dry diameter, D0, to diameter measured at higher relative humidity, RH) are presented for three distinct air mass types, namely for: 1) free tropospheric winter conditions, 2) planetary boundary layer influenced air masses (during a summer period) and 3) Saharan dust events (SDE). The GF values at 85% RH (D0=100 nm) were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal GF distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed) are presented, which can be used for modeling purposes. Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the GF measurements. This made it possible to estimate the apparent ensemble mean GF of the organics (GForg) using inverse ZSR (Zdanovskii-Stokes-Robinson) modeling. GForg was found to be ~1.20 at aw=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationInfluence of particle chemical composition on the phase of cold clouds at a high‐alpine site in Switzerland(Wiley, 23.09.2009) Targino, Admir Créso; Coe, Hugh; Cozic, Julie; Crosier, Jonathan; Crawford, Ian; Bower, Keith; Flynn, Michael; Gallagher, Martin; Allan, James; Verheggen, Bart; Weingartner, Ernest; Baltensperger, Urs; Choularton, Tom [in: Journal of Geophysical Research: Atmospheres]This paper studies the influence of particle chemical composition on the phase of cold clouds observed during two intensive measurement periods of the Cloud and Aerosol Characterization Experiments conducted at the Jungfraujoch site (Switzerland). Cloud droplets and particles were sampled simultaneously using a suite of optical, chemical, and microphysical instruments connected downstream of a total inlet and an interstitial inlet. Sulphate and organic matter were the most abundant semivolatile species observed in the particulate phase during both campaigns. Periods of relatively large loadings of organic and inorganic species were also accompanied by enhancement of light‐absorbing aerosol concentrations. The cloud phase exhibited sharp transitions, alternating between highly glaciated and liquid phases over a few seconds within the same cloud event. It was also observed that conditions of elevated pollution were accompanied by an increase in occurrence of glaciated periods. The 24‐hour cloud event investigated on the 8 March 2004 was in the mixed phase for approximately 260 minutes, in the glaciated phase for approximately 64 minutes and in the liquid phase for the remainder of the time. On the 23 March 2004, another 24‐hour cloud event was captured in which the number of minutes as mixed‐phase and glaciated cloud were 196 and 31, respectively. The loadings of BC as well as organic and inorganic species were larger during the first period. The investigation was extended for the whole data set, and a statistical analysis was performed across the chemical data measured off the total inlet. The amount of organic and inorganic material found in liquid and glaciated clouds was statistically different, with organic and inorganic material as well as BC being enriched in glaciated conditions. The case studies and the statistical analysis together suggest an influence of the particle chemical composition on the cloud phase, which may be important in perturbing cloud microphysics in polluted regions.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationThe influence of small aerosol particles on the properties of water and ice clouds(Royal Society of Chemistry, 09.08.2008) Choularton, Thomas W.; Bower, Keith N.; Weingartner, Ernest; Crawford, Ian; Coe, Hugh; Gallagher, Martin W.; Flynn, Michael; Crosier, Jonathan; Connolly, Paul; Targino, Admir Créso; Alfarra, M. Rami; Baltensperger, Urs; Sjögren, Staffan; Verheggen, Bart; Cozic, Julie; Gysel, Martin [in: Faraday Discussions]In this paper, results are presented of the influence of small organic- and soot-containing particles on the formation of water and ice clouds. There is strong evidence that these particles have grown from nano particle seeds produced by the combustion of oil products. Two series of field experiments are selected to represent the observations made. The first is the CLoud-Aerosol Characterisation Experiment (CLACE) series of experiments performed at a high Alpine site (Jungfraujoch), where cloud was in contact with the ground and the measuring station. Both water and ice clouds were examined at different times of the year. The second series of experiments is the CLOud Processing of regional Air Pollution advecting over land and sea (CLOPAP) series, where ageing pollution aerosol from UK cities was observed, from an airborne platform, to interact with warm stratocumulus cloud in a cloud-capped atmospheric boundary layer. Combining the results it is shown that aged pollution aerosol consists of an internal mixture of organics, sulfate, nitrate and ammonium, the organic component is dominated by highly oxidized secondary material. The relative contributions and absolute loadings of the components vary with location and season. However, these aerosols act as Cloud Condensation Nuclei (CCN) and much of the organic material, along with the other species, is incorporated into cloud droplets. In ice and mixed phase cloud, it is observed that very sharp transitions (extending over just a few metres) are present between highly glaciated regions and regions consisting of supercooled water. This is a unique finding; however, aircraft observations in cumulus suggest that this kind of structure may be found in these cloud types too. It is suggested that this sharp transition is caused by ice nucleation initiated by oxidised organic aerosol coated with sulfate in more polluted regions of cloud, sometimes enhanced by secondary ice particle production in these regions.01A - Beitrag in wissenschaftlicher Zeitschrift