Browsing by Author "Duplissy, Jonathan"
Now showing 1 - 20 of 20
Results per page
Sort options
- PublicationAnalysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles(Copernicus, 28.01.2009) Meyer, Nic K.; Duplissy, Jonathan; Gysel, Martin; Metzger, Axel; Dommen, Josef; Weingartner, Ernest; Alfarra, Rami; Prévôt, André S.H.; Fletcher, C; Good, Nicholas; McFiggans, Gordan; Jonsson, Åsa M.; Hallquist, Mattias; Baltensperger, Urs; Ristovski, Zoran D. [in: Atmospheric Chemistry and Physics]The volatile and hygroscopic properties of ammonium sulphate seeded and unseeded secondary organic aerosol (SOA) derived from the photo-oxidation of atmospherically relevant concentrations of α-pinene were studied. The seed particles were electrospray generated ammonium sulphate ((NH4)2SO4) having diameters of approximately 33 nm with a quasi-mono-disperse size distribution (geometric standard deviation σg=1.3). The volatile and hygroscopic properties of both seeded and unseeded SOA were simultaneously measured with a VH-TDMA (volatility – hygroscopicity tandem differential mobility analyzer). VH-TDMA measurements of unseeded SOA show a decrease in the hygroscopic growth (HGF) factor for increased volatilisation temperatures such that the more volatile compounds appear to be more hygroscopic. This is opposite to the expected preferential evaporation of more volatile but less hygroscopic material, but could also be due to enhanced oligomerisation occurring at the higher temperature in the thermodenuder. In addition, HGF measurements of seeded SOA were measured as a function of time at two relative humidities, below (RH 75%) and above (RH 85%) the deliquescence relative humidity (DRH) of the pure ammonium sulphate seeds. As these measurements were conducted during the onset phase of photo-oxidation, during particle growth, they enabled us to find the dependence of the HGF as a function of the volume fraction of the SOA coating. HGF's measured at RH of 85% showed a continuous decrease as the SOA coating thickness increased. The measured growth factors show good agreements with ZSR predictions indicating that, at these RH values, there are only minor solute-solute interactions. At 75% RH, as the SOA fraction increased, a rapid increase in the HGF was observed indicating that an increasing fraction of the (NH4)2SO4 is subject to a phase transition, going into solution, with an increasing volume fraction of SOA. To our knowledge this is the first time that SOA derived from photo-oxidised α-pinene has been shown to affect the equilibrium water content of inorganic aerosols below their DRH. For SOA volume fractions above ~0.3 the measured growth factor followed roughly parallel to the ZSR prediction based on fully dissolved (NH4)2SO4 although with a small difference that was just larger than the error estimate. Both incomplete dissolution and negative solute-solute interactions could be responsible for the lower HGF observed compared to the ZSR predictions.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationCloud forming potential of secondary organic aerosol under near atmospheric conditions(Wiley, 2008) Duplissy, Jonathan; Gysel, Martin; Alfarra, M. Rami; Dommen, Josef; Metzger, Axel; Prévôt, André S.H.; Weingartner, Ernest; Laaksonen, Ari; Raatikainen, Tomi; Good, Nicholas; Turner, S. Fiona; McFiggans, Gordon; Baltensperger, Urs [in: Geophysical Research Letters]Cloud droplets form by nucleation on atmospheric aerosol particles. Populations of such particles invariably contain organic material, a major source of which is thought to be condensation of photo‐oxidation products of biogenic volatile organic compounds (VOCs). We demonstrate that smog chamber studies of the formation of such biogenic secondary organic aerosol (SOA) formed during photo‐oxidation must be conducted at near atmospheric concentrations to yield atmospherically representative particle composition, hygroscopicity and cloud‐forming potential. Under these conditions, the hygroscopicity measured at 95% relative humidity can be used reliably to predict the CCN activity of the SOA particles by assuming droplet surface tension of pure water. We also show that the supersaturation required to activate a given size of particle decreases with age.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationEvidence for the role of organics in aerosol particle formation under atmospheric conditions(National Academy of Sciences, 19.01.2010) Metzger, Axel; Verheggen, Bart; Dommen, Josef; Duplissy, Jonathan; Prévôt, André S.H.; Weingartner, Ernest; Riipinen, Ilona; Kulmala, Markku; Spracklen, Dominick V.; Carslaw, Kenneth S.; Baltensperger, Urs [in: Proceedings of the National Academy of Sciences of the United States of America]New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationEvolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics(AIP Publishing, 24.06.2013) Keskinen, Helmi; Virtanen, Annele; Joutsensaari, Jorma; Tsagkogeorgas, Georgios; Duplissy, Jonathan; Schobesberger, Siegfried; Gysel, Martin; Riccobono, Francesco; Slowik, Jay Gates; Bianchi, Federico; Yli-Juuti, Taina; Lehtipalo, Katrianne; Rondo, Linda; Breitenlechner, Martin; Kupc, Agnieszka; Almeida, João; Amorim, Antonio; Dunne, Eimear M.; Downard, Andrew J.; Ehrhart, Sebastian; Franchin, Alessandro; Kajos, Maija K.; Kirkby, Jasper; Kürten, Andreas; Nieminen, Tuomo; Makhmutov, Vladimir; Mathot, Serge; Miettinen, Pasi; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Santos, Filipe D.; Schallhart, Simon; Sipilä, Mikko; Stozhkov, Yuri; Tomé, Antonio; Vaattovaara, Petri; Wimmer, Daniela; Prévôt, André S.H.; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Viisanen, Yrjö; Weingartner, Ernest; Riipinen, Ilona; Hansel, Armin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R.; Baltensperger, Urs; Wex, Heike; Stratmann, Frank; Laaksonen, Ari; DeMott, Paul J.; O'Dowd, Colin D. [in: Nucleation and atmospheric aerosols]04B - Beitrag Konferenzschrift
- PublicationEvolution of particle composition in CLOUD nucleation experiments(Copernicus, 2013) Keskinen, Helmi; Virtanen, Annele; Joutsensaari, Jorma; Tsagkogeorgas, Georgios; Duplissy, Jonathan; Schobesberger, Siegfried; Gysel, Martin; Riccobono, Francesco; Slowik, Jay Gates; Bianchi, Federico; Yli-Juuti, Taina; Lehtipalo, Katrianne; Rondo, Linda; Breitenlechner, Martin; Kupc, Agnieszka; Almeida, João; Amorim, Antonio; Dunne, Eimear M.; Downard, Andrew J.; Ehrhart, Sebastian; Franchin, Alessandro; Kajos, Maija K.; Kirkby, Jasper; Kürten, Andreas; Nieminen, Tuomo; Makhmutov, Vladimir; Mathot, Serge; Miettinen, Pasi; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Santos, Felipe D.; Schallhart, Simon; Sipilä, Mikko; Stozhkov, Yuri; Tomé, Antonio; Vaattovaara, Petri; Wimmer, Daniela; Prévôt, André; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Weingartner, Ernest; Viisanen, Yrjö; Riipinen, Ilona; Hansel, Armin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R.; Baltensperger, Urs; Wex, Heike; Stratmann, Frank; Laaksonen, Ari [in: Atmospheric Chemistry and Physics]Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre européen pour la recherche nucléaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationHygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland(Copernicus, 30.09.2008) Sjögren, Staffan; Gysel, Martin; Weingartner, Ernest; Alfarra, M. Rami; Duplissy, Jonathan; Cozic, Julie; Crosier, Jonathan; Coe, Hugh; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA) during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (GF, i.e. the relative change in particle diameter from dry diameter, D0, to diameter measured at higher relative humidity, RH) are presented for three distinct air mass types, namely for: 1) free tropospheric winter conditions, 2) planetary boundary layer influenced air masses (during a summer period) and 3) Saharan dust events (SDE). The GF values at 85% RH (D0=100 nm) were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal GF distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed) are presented, which can be used for modeling purposes. Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the GF measurements. This made it possible to estimate the apparent ensemble mean GF of the organics (GForg) using inverse ZSR (Zdanovskii-Stokes-Robinson) modeling. GForg was found to be ~1.20 at aw=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationInfluence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol(Royal Society of Chemistry, 05.08.2009) Jurányi, Zsófia; Gysel, Martin; Duplissy, Jonathan; Weingartner, Ernest; Tritscher, Torsten; Dommen, Josef; Henning, Silvia; Ziese, Markus; Kiselev, Alexej; Stratmann, Frank; George, Ingrid; Baltensperger, Urs [in: Physical Chemistry Chemical Physics]Hygroscopic properties of secondary organic aerosol (SOA) formed by photooxidation of different concentrations (10–27 or 220–270 ppb) of α-pinene precursor were investigated at different relative humidities (RH) using a hygroscopicity tandem differential mobility analyzer (HTDMA, RH = 95–97%) and using the mobile version of the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, RH = 98–99.3%). In addition, the cloud condensation nuclei (CCN) activity was measured applying two CCN counters (CCNC). An apparent single-hygroscopicity parameter, κ, of ∼0.09, ∼0.07–0.13, and ∼0.02–0.04 was derived from CCNC, HTDMA and LACIS data, respectively, assuming the surface tension of pure water. Closure between HTDMA and CCNC data was achieved within experimental uncertainty, whereas closure between LACIS and CCNC was only achieved by assuming a concentration-dependent surface tension reduction, consequently resulting in lower CCNC-derived κ values. Comparing different experimental techniques at varying precursor concentrations in more detail reveals further open questions. Varying precursor concentration influences hygroscopic growth factors at subsaturated RH, while it has no effect on the CCN activation. This difference in behaviour might be caused by precursor concentration-dependent surface tension depression or changing droplet solution concentration dependence of the water activity coefficient with varying SOA composition. Furthermore, evidence was found that the SOA might need several seconds to reach the equilibrium growth factor at high RH.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationIntercomparison study of six HTDMAs. results and recommendations(Copernicus, 24.07.2009) Duplissy, Jonathan; Gysel, Martin; Sjogren, S.; Meyer, Nickolas; Good, Nicholas; Kammermann, Lukas; Michaud, Vincent; Weigel, Ralf; Martins dos Santos, Sebastiao; Gruening, Carsten; Villani, P.; Laj, Paolo; Sellegri, Karine; Metzger, Axel; McFiggans, Gordon B.; Wehrle, Günther; Richter, René; Dommen, Josef; Ristovski, Zoran; Baltensperger, Urs; Weingartner, Ernest [in: Atmospheric Measurement Techniques]We report on an intercomparison of six different hygroscopicity tandem differential mobility analysers HTDMAs). These HTDMAs are used worldwide in laboratory experiments and field campaigns to measure the water uptake of aerosol particles and have never been intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and data analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instruments and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationIon-induced nucleation of pure biogenic particles(Springer, 26.05.2016) Kirby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A.D.; Riipinen, Ilona; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L.; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S.; Curtius, Joachim [in: Nature]Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationLaboratory observation of oligomers in the aerosol from isoprene/NOₓ photooxidation(Wiley, 2006) Dommen, Josef; Metzger, Axel; Duplissy, Jonathan; Kalberer, Markus; Alfarra, M. Rami; Gascho, Astrid; Weingartner, Ernest; Prévôt, André S.H.; Verheggen, Bart; Baltensperger, Urs [in: Geophysical Research Letters]Compounds assigned to be oxidation products of isoprene (2-methyl-1,3-butadiene) have recently been observed in ambient aerosols, suggesting that isoprene might play an important role in secondary organic aerosol (SOA) formation due to its large global source strength. SOA yields from photooxidation of isoprene and NOₓ in a chamber agree fairly well with previous data. Matrix assisted laser desorption/ionization mass spectrometry showed the formation of high molecular weight compounds over the course of 15-hour experiments. Concurrently, the volatility of the SOA decreased markedly as observed by a tandem differential mobility analyzer. The volume fraction remaining of SOA at 150°C increased steadily from 5 to 25% during the same experiments. These observations are attributed to oligomerization reactions occurring in the aerosol phase. Under dry conditions a lower volatility was observed.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationMolecular understanding of sulphuric acid–amine particle nucleation in the atmosphere(Springer, 2013) Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K.; Kupiainen-Määttä, Oona; Praplan, Arnaud P.; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M.; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N.; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J.; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D.; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H.; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E.; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S.; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R.; Vehkamäki, Hanna; Kirkby, Jasper [in: Nature]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationNew particle formation in the free troposphere. A question of chemistry and timing(American Association for the Advancement of Science, 2016) Bianchi, Federico; Tröstl, Jasmin; Junninen, Heikki; Frege, Carla; Henne, Stephan; Hoyle, Christopher R.; Molteni, Ugo; Herrmann, Erik; Adamov, Alexey; Bukowiecki, Nicolas; Chen, Xuemeng; Duplissy, Jonathan; Gysel, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kontkanen, Jenni; Kürten, Andreas; Manninen, Hanna E.; Münch, Steffen; Peräkylä, Otso; Petäjä, Tuukka; Rondo, Linda; Williamson, Christina; Weingartner, Ernest; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku; Dommen, Josef; Baltensperger, Urs [in: Science]From neutral to new Many of the particles in the troposphere are formed in situ, but what fraction of all tropospheric particles do they constitute and how exactly are they made? Bianchi et al report results from a high-altitude research station. Roughly half of the particles were newly formed by the condensation of highly oxygenated multifunctional compounds. A combination of laboratory results, field measurements, and model calculations revealed that neutral nucleation is more than 10 times faster than ion-induced nucleation, that particle growth rates are size-dependent, and that new particle formation occurs during a limited time window.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationOxidation products of biogenic emissions contribute to nucleation of atmospheric particles(American Association for the Advancement of Science, 2014) Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E.; Dommen, Josef; Ortega, Ismael K.; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Downard, Andrew; Dunne, Eimear M.; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Hansel, Armin; Junninen, Heikki; Kajos, Maija; Keskinen, Helmi; Kupc, Agnieszka; Kürten, Andreas; Kvashin, Alexander N.; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P.; Santos, Filipe D.; Schallhart, Simon; Seinfeld, John H.; Sipilä, Mikko; Spracklen, Dominick V.; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjö; Vrtala, Aron; Wagner, Paul E.; Weingartner, Ernest; Wex, Heike; Wimmer, Daniela; Carslaw, Kenneth S.; Curtius, Joachim; Donahue, Neil M.; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R.; Baltensperger, Urs [in: Science]Out of the Air New-particle formation from gaseous precursors in the atmosphere is a complex and poorly understood process with importance in atmospheric chemistry and climate. Laboratory studies have had trouble reproducing the particle formation rates that must occur in the natural world. Riccobono et al. used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to recreate a realistic atmospheric environment. Sulfuric acid and oxidized organic vapors in typical natural concentrations caused particle nucleation at similar rates to those observed in the lower atmosphere.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationParticle nucleation events at the high Alpine station Jungfraujoch(AIP Publishing, 24.05.2013) Bianchi, Federico; Junninen, Heikki; Tröstl, Jasmin; Duplissy, Jonathan; Rondo, Linda; Simon, Mario; Kürten, Andreas; Adamov, Alexey; Curtius, Joachim; Dommen, Josef; Weingartner, Ernest; Worsnop, Douglas R.; Kulmala, Markku; Baltensperger, Urs; DeMott, Paul J.; O'Dowd Colin D. [in: Nucleation and atmospheric aerosols]04B - Beitrag Konferenzschrift
- PublicationReduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation(National Academy of Sciences, 2016) Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S. [in: Proceedings of the National Academy of Sciences]A mechanism for the formation of atmospheric aerosols via the gas to particle conversion of highly oxidized organic molecules is found to be the dominant aerosol formation process in the preindustrial boundary layer over land. The inclusion of this process in a global aerosol model raises baseline preindustrial aerosol concentrations and could lead to a reduction of 27% in estimates of anthropogenic aerosol radiative forcing.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationRelating hygroscopicity and composition of organic aerosol particulate matter(Copernicus, 10.02.2011) Duplissy, Jonathan; DeCarlo, Peter F.; Dommen, Josef; Alfarra, M. Rami; Metzger, Axel; Barmpadimos, Iakovos; Prevot, Andre S.H.; Weingartner, Ernest; Tritscher, Torsten; Gysel, Martin; Aiken, Allison C.; Jimenez, Jose L; Canagaratna, Manjula R.; Worsnop, Douglas R.; Collins, Don R.; Tomlinson, Jason; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "ϰorg" parameter, and f44 was determined and is given by ϰorg = 2.2 × f44 − 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationResults from the CERN pilot CLOUD experiment(Copernicus, 15.02.2010) Duplissy, Jonathan; Enghoff, Martin Bødker; Aplin, Karen L.; Arnold, Frank; Aufmhoff, Heinfried; Avngaard, Michael; Baltensperger, Urs; Bondo, Torsten; Bingham, Robert; Carslaw, Ken S.; Curtius, Joachim; David, A.; Fastrup, Bent; Gagné, Stéphanie; Hahn, F.; Harrison, Richerd Giles; Kellett, Barry; Kirkby, Jasper; Kulmala, Markku; Laakso, Lauri; Laaksonen, Ari; Lillestøl, Egil; Lockwood, Mike; Mäkelä, Jyrki Mikael; Makhmutov, Vladimir; Marsh, N. D.; Nieminen, Tuomo; Onnela, Antti; Pedersen, E.; Pedersen, Jens Olaf Pepke; Polny, Josef; Reichl, Udo; Seinfeld, John H.; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Svensmark, Henrik; Svensmark, Jacob; Veenhof, Rob; Verheggen, B.; Viisanen, Yrjö; Wagner, Paul E.; Wehrle, Günther; Weingartner, Ernest; Wex, Heike; Wilhelmsson, Mats; Winkler, Paul M. [in: Atmospheric Chemistry and Physics]During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2O concentrations were typically around 106 cm−3 or less. The experimentally measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However, in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 °C).01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationRole of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation(Springer, 24.08.2011) Kirkby, Jasper; Curtius, Joachim; Almeida, João; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Franchin, Alessandro; Gagné, Stéphanie; Ickes, Luisa; Kürten, Andreas; Kupc, Agnieszka; Metzger, Axel; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Tsagkogeorgas, Georgios; Wimmer, Daniela; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Downard, Andrew; Ehn, Mikael; Flagan, Richard C.; Haider, Stefan; Hansel, Armin; Hauser, Daniel; Jud, Werner; Junninen, Heikki; Kreissl, Fabian; Kvashin, Alexander; Laaksonen, Ari; Lehtipalo, Katrianne; Lima, Jorge; Lovejoy, Edward R.; Makhmutov, Vladimir; Mathot, Serge; Mikkilä, Jyri; Minginette, Pierre; Mogo, Sandra; Nieminen, Tuomo; Onnela, Antti; Pereira, Paulo; Petäjä, Tuukka; Schnitzhofer, Ralf; Seinfeld, John H.; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Vanhanen, Joonas; Viisanen, Yrjo; Vrtala, Aron; Wagner, Paul E.; Walther, Hansueli; Weingartner, Ernest; Wex, Heike; Winkler, Paul M.; Carslaw, Kenneth S.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku [in: Nature]Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationThe role of low-volatility organic compounds in initial particle growth in the atmosphere(Springer, 2016) Tröstl, Jasmin; Chuang, Wayne K.; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S.; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M.; Miettinen, Pasi; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James N.; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Carslaw, Kenneth S.; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R.; Donahue, Neil M.; Baltensperger, Urs [in: Nature]About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday1. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres2,3. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles4, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth5,6, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer7,8,9,10. Although recent studies11,12,13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon2, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)2,14, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10−4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10−4.5 to 10−0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationWidening the gap between measurement and modelling of secondary organic aerosol properties?(Copernicus, 2010) Good, Nicholas; Topping, D. O.; Duplissy, Jonathan; Gysel, Martin; Meyer, Nic K.; Metzger, Axel; Turner, S. F.; Baltensperger, Urs; Ristovski, Zoran; Weingartner, Ernest; Coe, Hugh; McFiggans, Gordan [in: Atmospheric Chemistry and Physics]The link between measured sub-saturated hygroscopicity and cloud activation potential of secondary organic aerosol particles produced by the chamber photo-oxidation of α-pinene in the presence or absence of ammonium sulphate seed aerosol was investigated using two models of varying complexity. A simple single hygroscopicity parameter model and a more complex model (incorporating surface effects) were used to assess the detail required to predict the cloud condensation nucleus (CCN) activity from the sub-saturated water uptake. Sub-saturated water uptake measured by three hygroscopicity tandem differential mobility analyser (HTDMA) instruments was used to determine the water activity for use in the models. The predicted CCN activity was compared to the measured CCN activation potential using a continuous flow CCN counter. Reconciliation using the more complex model formulation with measured cloud activation could be achieved widely different assumed surface tension behavior of the growing droplet; this was entirely determined by the instrument used as the source of water activity data. This unreliable derivation of the water activity as a function of solute concentration from sub-saturated hygroscopicity data indicates a limitation in the use of such data in predicting cloud condensation nucleus behavior of particles with a significant organic fraction. Similarly, the ability of the simpler single parameter model to predict cloud activation behaviour was dependent on the instrument used to measure sub-saturated hygroscopicity and the relative humidity used to provide the model input. However, agreement was observed for inorganic salt solution particles, which were measured by all instruments in agreement with theory. The difference in HTDMA data from validated and extensively used instruments means that it cannot be stated with certainty the detail required to predict the CCN activity from sub-saturated hygroscopicity. In order to narrow the gap between measurements of hygroscopic growth and CCN activity the processes involved must be understood and the instrumentation extensively quality assured. It is impossible to say from the results presented here due to the differences in HTDMA data whether: i) Surface tension suppression occurs ii) Bulk to surface partitioning is important iii) The water activity coefficient changes significantly as a function of the solute concentration.01A - Beitrag in wissenschaftlicher Zeitschrift