Browsing by Author "Fiebig, Markus"
Now showing 1 - 8 of 8
Results per page
Sort options
- PublicationA European aerosol phenomenology-5. Climatology of black carbon optical properties at 9 regional background sites across Europe(Elsevier, 2016) Zanatta, Marco; Gysel, Martin; Bukowiecki, Nicolas; Müller, Thomas; Weingartner, Ernest; Areskoug, Hans; Fiebig, Markus; Yttri, Karl Espen; Mihalopoulos, Nikolaos; Kouvarakis, Giorgos; Beddows, David; Harrison, Roy; Cavalli, Fabrizia; Putaud, Jean; Spindler, Gerald; Wiedensohler, Alfred; Alastuey, Andrés; Pandolfi, Marco; Sellegri, Karine; Swietlicki, Erik; Jaffrezo, Jean-Luc; Baltensperger, Urs; Laj, Paolo [in: Atmospheric Environment]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationAerosol decadal trends – Part 1. In-situ optical measurements at GAW and IMPROVE stations(Copernicus, 2013) Collaud Coen, Martine; Andrews, Elisabeth; Asmi, Ari; Baltensperger, Urs; Bukowiecki, Nicolas; Day, Derek; Fiebig, Markus; Fjaeraa, Ann Mari; Flentje, Harald; Hyvärinen, Antti-Pekka; Jefferson, Anne; Jennings, Stephen G.; Kouvarakis, Giorgos; Lihavainen, Heikki; Lund Myhre, Cathrine; Malm, William; Mihalopoulos, Nikolaos; Molenar, John; O'Dowd, Colin; Ogren, John A.; Schichtel, Bret; Sheridan, Patrick; Virkkula, Aki; Weingartner, Ernest; Weller, Rolf; Laj, Paolo [in: Atmospheric Chemistry and Physics]Currently many ground-based atmospheric stations include in-situ measurements of aerosol physical and optical properties, resulting in more than 20 long-term (> 10 yr) aerosol measurement sites in the Northern Hemisphere and Antarctica. Most of these sites are located at remote locations and monitor the aerosol particle number concentration, wavelength-dependent light scattering, backscattering, and absorption coefficients. The existence of these multi-year datasets enables the analysis of long-term trends of these aerosol parameters, and of the derived light scattering Ångström exponent and backscatter fraction. Since the aerosol variables are not normally distributed, three different methods (the seasonal Mann-Kendall test associated with the Sen's slope, the generalized least squares fit associated with an autoregressive bootstrap algorithm for confidence intervals, and the least-mean square fit applied to logarithms of the data) were applied to detect the long-term trends and their magnitudes. To allow a comparison among measurement sites, trends on the most recent 10 and 15 yr periods were calculated. No significant trends were found for the three continental European sites. Statistically significant trends were found for the two European marine sites but the signs of the trends varied with aerosol property and location. Statistically significant decreasing trends for both scattering and absorption coefficients (mean slope of −2.0% yr−1) were found for most North American stations, although positive trends were found for a few desert and high-altitude sites. The difference in the timing of emission reduction policy for the Europe and US continents is a likely explanation for the decreasing trends in aerosol optical parameters found for most American sites compared to the lack of trends observed in Europe. No significant trends in scattering coefficient were found for the Arctic or Antarctic stations, whereas the Arctic station had a negative trend in absorption coefficient. The high altitude Pacific island station of Mauna Loa presents positive trends for both scattering and absorption coefficients.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationAerosol decadal trends – Part 2. In-situ aerosol particle number concentrations at GAW and ACTRIS stations(Copernicus, 2013) Asmi, Ari; Collaud Coen, Martine; Ogren, John A.; Andrews, Elisabeth; Sheridan, Patrick; Jefferson, Anne; Weingartner, Ernest; Baltensperger, Urs; Bukowiecki, Nicolas ; Lihavainen, Heikki; Kivekäs, Niku; Asmi, Eija; Aalto, Pasi Pekka; Kulmala, Markku; Wiedensohler, Alfred; Birmili, Wolfram; Hamed, Amar; O'Dowd, Colin; Jennings, Stephen G.; Weller, Rolf; Flentje, Harald; Fjaeraa, Ann Mari; Fiebig, Markus; Myhre, Cathrine Lund; Hallar, Anna Gannet; Swietlicki, Erik; Kristensson, Adam; Laj, Paolo [in: Atmospheric Chemistry and Physics]We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001–2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some co-emitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationA European aerosol phenomenology - 6. Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites(Copernicus, 2018) Pandolfi, Marco; Alados-Arboledas, Lucas; Alastuey, Andrés; Andrade, Marcos; Angelov, Christo; Artiñano, Begoña; Backman, John; Baltensperger, Urs; Bonasoni, Paolo; Bukowiecki, Nicolas; Collaud Coen, Martine; Conil, Sébastien; Coz, Esther; Crenn, Vincent; Dudoitis, Vadimas; Ealo, Marina; Eleftheriadis, Kostas; Favez, Olivier; Fetfatzis, Prodromos; Fiebig, Markus; Flentje, Harald; Ginot, Patrick; Gysel, Martin; Henzing, Bas; Hoffer, Andras; Holubova Smejkalova, Adela; Kalapov, Ivo; Kalivitis, Nikos; Kouvarakis, Giorgos; Kristensson, Adam; Kulmala, Markku; Lihavainen, Heikki; Lunder, Chris; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mihalopoulos, Nikolaos; Moerman, Marcel; Nicolas, José; O'Dowd, Colin D.; Petäjä, Tuukka; Petit, Jean-Eudes; Pichon, Jean Marc; Prokopciuk, Nina; Putaud, Jean-Philippe; Rodríguez, Sergio; Sciare, Jean; Sellegri, Karine; Swietlicki, Erik; Titos, Gloria; Tuch, Thomas; Tunved, Peter; Ulevicius, Vidmantas; Vaishya, Aditya; Vana, Milan; Virkkula, Aki; Vratolis, Stergios; Weingartner, Ernest; Wiedensohler, Alfred; Laj, Paolo [in: Atmospheric Chemistry and Physics]This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intra-annual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationMobility particle size spectrometers. harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions(Copernicus, 29.03.2012) Wiedensohler, Alfred; Birmili, Wolfram; Nowak, Marta; Sonntag, André; Weinhold, Kay; Merkel, Maik; Wehner, Birgit; Tuch, Thomas; Pfeifer, Sascha; Fiebig, Markus; Fjäraa, Ann Mari; Asmi, Eija; Sellegri, Karine; Depuy, R.; Venzac, Hervé; Villani, Paolo; Laj, Paolo; Aalto, Pasi Pekka; Ogren, John A.; Swietlicki, Erik; Williams, Paul I.; Roldin, Pontus; Quincey, Paul; Hüglin, Christoph; Fierz-Schmidhauser, Rahel; Gysel, Martin; Weingartner, Ernest; Riccobono, Francesco; Santos, S.; Gruening, Carsten; Faloon, K.; Beddows, D.; Harrison, Roy; Monahan, C.; Jennings, Stephen G.; O'Dowd, Colin D.; Marinoni, Angela; Horn, H.-G.; Keck, L.; Jiang, Jingkun; Scheckman, Jakob; McMurry, Peter H.; Deng, Zhaoze; Zhao, Chunsheng; Moerman, Marcel; Henzing, Bas; de Leeuw, Gerrit; Löschau, G.; Bastian, S. [in: Atmospheric Measurement Techniques]Abstract. Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationNumber size distributions and seasonality of submicron particles in Europe 2008–2009(Copernicus, 15.06.2011) Asmi, Ari; Wiedensohler, Alfred; Laj, Paolo; Fjaeraa, Ann Mari; Sellegri, Karine; Birmili, Wolfram; Weingartner, Ernest; Baltensperger, Urs; Zdimal, Vladimir; Zikova, Nadezda; Putaud, Jean-Philippe; Marinoni, Angela; Tunved, Peter; Hansson, Hans-Christen; Fiebig, Markus; Kivekäs, Niku; Lihavainen, Heikki; Asmi, Eija; Ulevicius, Vidmantas; Aalto, Pasi Pekka; Swietlicki, Erik; Kristensson, Adam; Mihalopoulos, Nikolaos; Kalivitis, Nikos; Kalapov, Ivo; Kiss, Gyula; de Leeuw, Gerrit; Henzing, Bas; Harrison, Roy; Beddows, David; O'Dowd, Colin; Jennings, Stephen G.; Flentje, Harald; Weinhold, Kay; Meinhardt, Frank; Ries, Ludwig; Kulmala, Markku [in: Atmospheric Chemistry and Physics]Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the Mediterranean aerosol exhibit high seasonality, and a strong accumulation mode in the summer. The greatest concentrations were observed at the Ispra station in Northern Italy with high accumulation mode number concentrations in the winter. The aerosol number concentrations at the Arctic station Zeppelin in Ny-Ålesund in Svalbard have also a strong seasonal cycle, with greater concentrations of accumulation mode particles in winter, and dominating summer Aitken mode indicating more recently formed particles. Observed particles did not show any statistically significant regional work-week or weekday related variation in number concentrations studied. Analysis products are made for open-access to the research community, available in a freely accessible internet site. The results give to the modelling community a reliable, easy-to-use and freely available comparison dataset of aerosol size distributions.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationPerturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP experiment in summer 2004(Copernicus, 2007) Petzold, Andreas; Weinzierl, Bernadett; Huntrieser, Heidi; Stohl, Andreas; Real, Elsa; Cozic, Julie; Fiebig, Markus; Hendricks, Johannes; Lauer, Axel; Law, Kathy; Roiger, A.; Schlager, H.; Weingartner, Ernest [in: Atmospheric Chemistry and Physics]During the ICARTT-ITOP Experiment in summer 2004 plumes from large wildfires in North America were transported to Central Europe at 3–8 km altitude above sea level (a.s.l.). These plumes were studied with the DLR (Deutsches Zentrum fuer Luft- und Raumfahrt) research aircraft Falcon which was equipped with an extensive set of in situ aerosol and trace gas instruments. Analyses by the Lagrangian dispersion model FLEXPART provided source regions, transport times and horizontal extent of the fire plumes. Results from the general circulation model ECHAM/MADE and data from previous aerosol studies over Central Europe provided reference vertical profiles of black carbon (BC) mass concentrations for year 2000 conditions with forest fire activities below the long-term average. Smoke plume observations yielded a BC mass fraction of total aerosol mass with respect to PM 2.5 of 2–8%. The ratio of BC mass to excess CO was 3–7.5 mg BC (g CO)−1. Even after up to 10 days of atmospheric transport, both characteristic properties were of the same order as for fresh emissions. This suggests an efficient lifting of BC from forest fires to higher altitudes with only minor scavenging removal of particulate matter. Maximum aerosol absorption coefficient values were 7–8 Mm−1 which is about two orders of magnitude above the average European free tropospheric background value. Forest fire aerosol size distributions were characterised by a strong internally mixed accumulation mode centred at modal diameters of 0.25–0.30 µm with an average distribution width of 1.30. Nucleation and small Aitken mode particles were almost completely depleted.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublicationVariations in tropospheric submicron particle size distributions across the European continent 2008–2009(Copernicus, 2014) Beddows, David; Dall'Osto, Manuel; Harrison, Roy; Kulmala, Markku; Asmi, Ari; Wiedensohler, Alfred; Laj, Paolo; Fjaeraa, Ann Mari; Sellegri, Karine; Birmili, Wolfram; Bukowiecki, Nicolas; Weingartner, Ernest; Baltensperger, Urs; Zdimal, Vladimir; Zikova, Nadezda; Putaud, Jean-Philippe; Marinoni, Angela; Tunved, Peter; Hansson, Hans-Christen; Fiebig, Markus; Kivekäs, Niku; Swietlicki, Erik; Lihavainen, Heikki; Asmi, Eija; Ulevicius, Vidmantas; Aalto, Pasi Pekka; Mihalopoulos, Nikolaos; Kalivitis, Nikos; Kalapov, Ivo; Kiss, Gyula; de Leeuw, Gerrit; Henzing, Bas; O'Dowd, Colin; Jennings, Stephen G.; Flentje, Harald; Meinhardt, Frank; Ries, Ludwig; Denier van der Gon, Hugo; Visschedijk, Antoon [in: Atmospheric Chemistry and Physics]Cluster~analysis of particle number size distributions from~background sites across Europe~is presented. This generated a total of nine clusters of particle size distributions which could be further combined into two main groups, namely: a south-to-north category (four clusters) and a west-to-east category (five clusters). The first group was identified as most frequently being detected inside and around northern Germany and neighbouring countries, showing clear evidence of local afternoon nucleation and growth events that could be linked to movement of air masses from south to north arriving ultimately at the Arctic contributing to Arctic haze.~The second group of particle size spectra proved to have narrower size distributions and collectively showed a dependence of modal diameter upon the longitude of the site (west to east) at which they were most frequently detected.~These clusters indicated regional nucleation (at the coastal sites) growing to larger modes further inland. The apparent growth rate of the modal diameter was around 0.6–0.9 nm h−1. Four specific air mass back-trajectories were successively taken as case studies to examine in real time the evolution of aerosol size distributions across Europe. ~While aerosol growth processes can be observed as aerosol traverses Europe, the processes are often obscured by the addition of aerosol by emissions en route. This study revealed that some of the 24 stations exhibit more complex behaviour than others, especially when impacted by local sources or a variety of different air masses. Overall, the aerosol size distribution clustering analysis greatly simplifies the complex data set and allows a description of aerosol aging processes, which reflects the longer-term average development of particle number size distributions as air masses advect across Europe.01A - Beitrag in wissenschaftlicher Zeitschrift