Browsing by Author "Verheggen, Bart"
Now showing 1 - 11 of 11
- Results per page
- Sort options
Publication Aerosol partitioning between the interstitial and the condensed phase in mixed‐phase clouds(Wiley, 13.12.2007) Verheggen, Bart; Cozic, Julie; Weingartner, Ernest; Bower, Keith; Mertes, Stephan; Connolly, Paul; Gallagher, Martin; Flynn, Michael; Choularton, Tom; Baltensperger, UrsThe partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE‐3, CLACE‐3½ and CLACE‐4) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the activated fraction of aerosol particles, FN, defined as the fraction of the total aerosol number concentration (with particle diameter dp > 100 nm) that has been incorporated into cloud particles. The liquid and ice water content of mixed‐phase clouds were characterized by analyzing multiple cloud probes. The dependence of the activated fraction on several environmental factors is discussed on the basis of more than 900 h of in‐cloud observations and parameterizations for key variables are given. FN is found to increase with increasing liquid water content and to decrease with increasing particle number concentration in liquid clouds. FN also decreases with increasing cloud ice mass fraction and with decreasing temperature from 0 to −25°C. The Wegener‐Bergeron‐Findeisen process probably contributed to this trend, since the presence of ice crystals causes liquid droplets to evaporate, thus releasing the formerly activated particles back into the interstitial phase. Ice nucleation could also have prevented additional cloud condensation nuclei from activating. The observed activation behavior has significant implications for our understanding of the indirect effect of aerosols on climate.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Aerosol processing in mixed‐phase clouds in ECHAM5‐HAM. Model description and comparison to observations(Wiley, 15.04.2008) Hoose, Corinna; Lohmann, Ulrike; Stier, Philip; Verheggen, Bart; Weingartner, ErnestThe global aerosol‐climate model ECHAM5‐HAM has been extended by an explicit treatment of cloud‐borne particles. Two additional modes for in‐droplet and in‐crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double‐moment cloud microphysics scheme. Transfer, production, and removal of cloud‐borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous‐phase sulfate production, freezing, melting, evaporation, sublimation, and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed‐phase cloud events at the alpine high‐altitude research station Jungfraujoch (Switzerland). Although the single‐column simulations cannot be compared one‐to‐one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron‐Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when assuming nonequilibrium conditions.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds(Wiley, 15.08.2008) Cozic, Julie; Mertes, Stephan; Verheggen, Bart; Cziczo, Daniel James; Gallavardin, Stephane J.; Walter, Saskia; Baltensperger, Urs; Weingartner, ErnestThe enrichment of black carbon (BC) mass in residuals of small ice crystals was investigated during intensive experiments in winter 2004 and 2005 at the high alpine research station Jungfraujoch (3580 m asl, Switzerland). Two inlets were used to sample the bulk aerosol (residuals of cloud droplets and ice crystals and nonactivated aerosol particles) and the residual particles of small ice crystals (diameter 5–20 μm). An enrichment of the BC mass fraction in the ice particle residuals was observed by investigating the measured BC mass concentration as a fraction of the bulk (submicrometer) aerosol mass concentration sampled by the two inlets. On the average, the BC mass fraction was 5% for the bulk aerosol but 27% for the ice particle residuals. The observed enrichment of BC in ice particle residuals suggests that some BC‐containing particles may preferentially act as ice nuclei, with important implications for the indirect aerosol effect via glaciation of clouds if these particles represent a significant fraction of the number of ice crystals nucleated.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch(Copernicus, 31.01.2008) Cozic, Julie; Verheggen, Bart; Weingartner, Ernest; Crosier, Jonathan; Bower, Keith N.; Flynn, Michael; Coe, Hugh; Henning, Silvia; Steinbacher, Martin; Henne, Stephan; Collaud Coen, Martine; Petzold, Andreas; Baltensperger, UrsThe chemical composition of submicron (fine mode) and supermicron (coarse mode) aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland) as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol) and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants). In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC) to particulate organic matter (OM) was found in winter (February–March 2005). Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE) than without SDE.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei. sampler description and first case study(Taylor & Francis, 07.09.2007) Mertes, Stephan; Verheggen, Bart; Walter, Saskia; Connolly, Paul; Ebert, Martin; Schneider, Johannes; Bower, Keith N.; Cozic, Julie; Weinbruch, Stephan; Baltensperger, Urs; Weingartner, ErnestA ground-based sampling system named Ice-CVI is introduced that is able to extract small ice particles with sizes between 5 and 20 μ m out of mixed-phase clouds. The instrument is based on a counterflow virtual impactor (CVI) removing interstitial particles and is supplemented by additional modules that pre-segregate other constituents of mixed-phase clouds. Ice particles of 20 μ m and smaller are expected to grow only by water vapor diffusion and there is a negligible probability that they scavenge aerosol particles by impaction and riming. Thus, their residuals which are released by the Ice-CVI can be interpreted as the original ice nuclei (IN). In a first field test within the Cloud and Aerosol Characterization Experiment (CLACE-3) at the high alpine research station Jungfraujoch, the collection behavior of the single components and the complete system was evaluated under atmospheric sampling conditions. By comparing parameters measured by the Ice-CVI with corresponding results obtained from other inlets or with in-situ instrumentation it is verified that the small ice particles are representatively collected whereas all other mixed phase cloud constituents are effectively suppressed. In a case study it is observed that super-micrometer particles preferentially serve as IN although in absolute terms the IN concentration is dominated by sub-micrometer particles. Mineral dust (Si), non-volatile organic matter and black carbon could be identified as IN components by means of different chemical analyses. The latter suggests an anthropogenic influence on the heterogeneous ice nucleation in supercooled, tropospheric clouds.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Evidence for the role of organics in aerosol particle formation under atmospheric conditions(National Academy of Sciences, 19.01.2010) Metzger, Axel; Verheggen, Bart; Dommen, Josef; Duplissy, Jonathan; Prévôt, André S.H.; Weingartner, Ernest; Riipinen, Ilona; Kulmala, Markku; Spracklen, Dominick V.; Carslaw, Kenneth S.; Baltensperger, UrsNew particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Influence of particle chemical composition on the phase of cold clouds at a high‐alpine site in Switzerland(Wiley, 23.09.2009) Targino, Admir Créso; Coe, Hugh; Cozic, Julie; Crosier, Jonathan; Crawford, Ian; Bower, Keith; Flynn, Michael; Gallagher, Martin; Allan, James; Verheggen, Bart; Weingartner, Ernest; Baltensperger, Urs; Choularton, TomThis paper studies the influence of particle chemical composition on the phase of cold clouds observed during two intensive measurement periods of the Cloud and Aerosol Characterization Experiments conducted at the Jungfraujoch site (Switzerland). Cloud droplets and particles were sampled simultaneously using a suite of optical, chemical, and microphysical instruments connected downstream of a total inlet and an interstitial inlet. Sulphate and organic matter were the most abundant semivolatile species observed in the particulate phase during both campaigns. Periods of relatively large loadings of organic and inorganic species were also accompanied by enhancement of light‐absorbing aerosol concentrations. The cloud phase exhibited sharp transitions, alternating between highly glaciated and liquid phases over a few seconds within the same cloud event. It was also observed that conditions of elevated pollution were accompanied by an increase in occurrence of glaciated periods. The 24‐hour cloud event investigated on the 8 March 2004 was in the mixed phase for approximately 260 minutes, in the glaciated phase for approximately 64 minutes and in the liquid phase for the remainder of the time. On the 23 March 2004, another 24‐hour cloud event was captured in which the number of minutes as mixed‐phase and glaciated cloud were 196 and 31, respectively. The loadings of BC as well as organic and inorganic species were larger during the first period. The investigation was extended for the whole data set, and a statistical analysis was performed across the chemical data measured off the total inlet. The amount of organic and inorganic material found in liquid and glaciated clouds was statistically different, with organic and inorganic material as well as BC being enriched in glaciated conditions. The case studies and the statistical analysis together suggest an influence of the particle chemical composition on the cloud phase, which may be important in perturbing cloud microphysics in polluted regions.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Laboratory observation of oligomers in the aerosol from isoprene/NOₓ photooxidation(Wiley, 2006) Dommen, Josef; Metzger, Axel; Duplissy, Jonathan; Kalberer, Markus; Alfarra, M. Rami; Gascho, Astrid; Weingartner, Ernest; Prévôt, André S.H.; Verheggen, Bart; Baltensperger, UrsCompounds assigned to be oxidation products of isoprene (2-methyl-1,3-butadiene) have recently been observed in ambient aerosols, suggesting that isoprene might play an important role in secondary organic aerosol (SOA) formation due to its large global source strength. SOA yields from photooxidation of isoprene and NOₓ in a chamber agree fairly well with previous data. Matrix assisted laser desorption/ionization mass spectrometry showed the formation of high molecular weight compounds over the course of 15-hour experiments. Concurrently, the volatility of the SOA decreased markedly as observed by a tandem differential mobility analyzer. The volume fraction remaining of SOA at 150°C increased steadily from 5 to 25% during the same experiments. These observations are attributed to oligomerization reactions occurring in the aerosol phase. Under dry conditions a lower volatility was observed.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Long‐term trend analysis of aerosol variables at the high‐alpine site Jungfraujoch(Wiley, 13.07.2007) Collaud Coen, Martine; Weingartner, Ernest; Nyeki, Stephan; Cozic, Julie; Henning, Silvia; Verheggen, Bart; Gehrig, Robert; Baltensperger, UrsThis study reports the first long-term trend analysis of aerosol optical measurements at the high-alpine site Jungfraujoch, which started 10.5 years ago. Since the aerosol variables are approximately lognormally distributed, the seasonal Kendall test and Sen's slope estimator were applied as nonparametric methods to detect the long-term trends for each month. The yearly trend was estimated by a least-mean-square fit, and the number of years necessary to detect this trend was calculated. The most significant trend is the increase (4–7% yr−1) in light-scattering coefficients during the September to December period. The light absorption and backscattering coefficients and the aerosol number concentration also show a positive trend during this time of the year. The hemispheric backscattering fraction and the scattering exponent calculated with the smaller wavelengths (450 and 550 nm), which relate to the small aerosol size fraction, decrease except during the summer, whereas the scattering exponent calculated with the larger wavelengths (550 and 700 nm) remains constant. Generally, the summer months at the Jungfraujoch, which are strongly influenced by planetary boundary layer air masses, do not show any long-term trend. The trends determined by least-mean-square fits of the scattering and backscattering coefficients, the hemispheric backscattering fractions, and the scattering exponent are significant, and the number of years necessary to detect them is shorter than 10 years. For these variables, the trends and the slopes estimated by the seasonal Kendall test are therefore confirmed by the least-mean-square fit results.01A - Beitrag in wissenschaftlicher ZeitschriftPublication Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch(Copernicus, 11.04.2007) Cozic, Julie; Verheggen, Bart; Mertes, Stephan; Connolly, Paul; Bower, Keith N.; Petzold, Andreas; Baltensperger, Urs; Weingartner, ErnestThe scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5–10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.01A - Beitrag in wissenschaftlicher ZeitschriftPublication The influence of small aerosol particles on the properties of water and ice clouds(Royal Society of Chemistry, 09.08.2008) Choularton, Thomas W.; Bower, Keith N.; Weingartner, Ernest; Crawford, Ian; Coe, Hugh; Gallagher, Martin W.; Flynn, Michael; Crosier, Jonathan; Connolly, Paul; Targino, Admir Créso; Alfarra, M. Rami; Baltensperger, Urs; Sjögren, Staffan; Verheggen, Bart; Cozic, Julie; Gysel, MartinIn this paper, results are presented of the influence of small organic- and soot-containing particles on the formation of water and ice clouds. There is strong evidence that these particles have grown from nano particle seeds produced by the combustion of oil products. Two series of field experiments are selected to represent the observations made. The first is the CLoud-Aerosol Characterisation Experiment (CLACE) series of experiments performed at a high Alpine site (Jungfraujoch), where cloud was in contact with the ground and the measuring station. Both water and ice clouds were examined at different times of the year. The second series of experiments is the CLOud Processing of regional Air Pollution advecting over land and sea (CLOPAP) series, where ageing pollution aerosol from UK cities was observed, from an airborne platform, to interact with warm stratocumulus cloud in a cloud-capped atmospheric boundary layer. Combining the results it is shown that aged pollution aerosol consists of an internal mixture of organics, sulfate, nitrate and ammonium, the organic component is dominated by highly oxidized secondary material. The relative contributions and absolute loadings of the components vary with location and season. However, these aerosols act as Cloud Condensation Nuclei (CCN) and much of the organic material, along with the other species, is incorporated into cloud droplets. In ice and mixed phase cloud, it is observed that very sharp transitions (extending over just a few metres) are present between highly glaciated regions and regions consisting of supercooled water. This is a unique finding; however, aircraft observations in cumulus suggest that this kind of structure may be found in these cloud types too. It is suggested that this sharp transition is caused by ice nucleation initiated by oxidised organic aerosol coated with sulfate in more polluted regions of cloud, sometimes enhanced by secondary ice particle production in these regions.01A - Beitrag in wissenschaftlicher Zeitschrift