Auflistung nach Autor:in "Wehrle, Günther"
Gerade angezeigt 1 - 8 von 8
- Treffer pro Seite
- Sortieroptionen
Publikation EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events(Copernicus, 25.08.2010) Manninen, Hanna E.; Nieminen, Tuomo; Asmi, Eija; Gagné, Stéphanie; Häkkinen, Silja; Lehtipalo, Katrianne; Aalto, Pasi Pekka; Vana, Marko; Mirme, Aadu; Mirme, Sander; Hõrrak, Urmas; Plass-Dülmer, Christian; Stange, Gert; Kiss, Gyula; Hoffer, András; Törő, N.; Moerman, Marcel; Henzing, Bas; de Leeuw, Gerrit; Brinkenberg, Marcel; Kouvarakis, Giorgos N.; Bougiatioti, Aikaterini; Mihalopoulos, Nikolaos; O'Dowd, Colin D.; Ceburnis, Darius; Arneth, Almut; Svenningsson, Brigitta; Swietlicki, Erik; Tarozzi, Leone; Decesari, Stefano; Facchini, Maria Cristina; Birmili, Wolfram; Sonntag, André; Wiedensohler, Alfred; Boulon, Julien; Sellegri, Karine; Laj, Paolo; Gysel, Martin; Bukowiecki, Nicolas; Weingartner, Ernest; Wehrle, Günther; Laaksonen, Ari; Hamed, Amar; Joutsensaari, Jorma; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, MarkkuWe present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1–42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1–30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments(Copernicus, 06.12.2010) Chirico, Roberto; DeCarlo, Peter F.; Heringa, Maarten F.; Tritscher, Torsten; Richter, René; Prévôt, André S. H.; Dommen, Josef; Weingartner, Ernest; Wehrle, Günther; Gysel, Martin; Laborde, Marie; Baltensperger, UrsDiesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23–0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0.21 to 0.37.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Intercomparison study of six HTDMAs. results and recommendations(Copernicus, 24.07.2009) Duplissy, Jonathan; Gysel, Martin; Sjogren, S.; Meyer, Nickolas; Good, Nicholas; Kammermann, Lukas; Michaud, Vincent; Weigel, Ralf; Martins dos Santos, Sebastiao; Gruening, Carsten; Villani, P.; Laj, Paolo; Sellegri, Karine; Metzger, Axel; McFiggans, Gordon B.; Wehrle, Günther; Richter, René; Dommen, Josef; Ristovski, Zoran; Baltensperger, Urs; Weingartner, ErnestWe report on an intercomparison of six different hygroscopicity tandem differential mobility analysers HTDMAs). These HTDMAs are used worldwide in laboratory experiments and field campaigns to measure the water uptake of aerosol particles and have never been intercompared. After an investigation of the different design of the instruments with their advantages and inconveniencies, the methods for calibration, validation and data analysis are presented. Measurements of nebulised ammonium sulphate as well as of secondary organic aerosol generated from a smog chamber were performed. Agreement and discrepancies between the instruments and to the theory are discussed, and final recommendations for a standard instrument are given, as a benchmark for laboratory or field experiments to ensure a high quality of HTDMA data.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer(Copernicus, 23.06.2011) Heringa, Maarten F.; DeCarlo, Peter F.; Chirico, Roberto; Tritscher, Torsten; Dommen, Josef; Weingartner, Ernest; Richter, René; Wehrle, Günther; Prévôt, André S.H.; Baltensperger, UrsA series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1±1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. This contribution at m/z 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19−0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a rather low relative contribution at m/z 43 (f 43) to the total organic mass spectrum. The non-oxidized fragment C3H7+ has a considerable contribution at m/z 43 for the fresh OA with an increasing contribution of the oxygenated ion C2H3O+ during aging. After five hours of aging, the OA has a rather low C2H3O+ signal for a given CO2+ fraction, possibly indicating a higher ratio of acid to non-acid oxygenated compounds in wood burning OA compared to other oxygenated organic aerosol (OOA).01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Measurement of relative humidity dependent light scattering of aerosols(Copernicus, 21.01.2010) Fierz-Schmidhauser, Rahel; Zieger, Paul; Wehrle, Günther; Jefferson, Anne; Ogren, John A.; Baltensperger, Urs; Weingartner, ErnestRelative humidity (RH) influences the water content of aerosol particles and therefore has an important impact on the particles' ability to scatter visible light. The RH dependence of the particle light scattering coefficient (σsp is therefore an important measure for climate forcing calculations. We built a humidification system for a nephelometer which allows the measurement of σsp at a defined RH in the range of 40–90%. This RH conditioner consists of a humidifier followed by a dryer, which enables us to measure the hysteresis behavior of deliquescent aerosol particles. In this paper we present the set-up of a new humidified nephelometer, a detailed characterization with well defined laboratory generated aerosols, and a first application in the field by comparing our instrument to another humidified nephelometer. Monodisperse ammonium sulfate and sodium chloride particles were measured at four different dry particle sizes. Agreement between measurement and prediction based on Mie theory was found for both σsp and f(RH)=σsp(RH)/σsp(dry) within the range of uncertainty. The two humidified nephelometers measuring at a rural site in the Black Forest (Germany) often detected different f(RH), probably caused by the aerosol hysteresis behavior: when the aerosol was metastable, therefore was scattering more light, only one instrument detected the higher f(RH).01A - Beitrag in wissenschaftlicher ZeitschriftPublikation New particle formation and ultrafine charged aerosol climatology at a high altitude site in the Alps (Jungfraujoch, 3580 m a.s.l., Switzerland)(Copernicus, 05.10.2010) Boulon, Julien; Sellegri, Karine; Venzac, Hervé; Picard, David; Weingartner, Ernest; Wehrle, Günther; Collaud Coen, Martine; Bütikofer, Rolf; Flückiger, Erwin; Baltensperger, Urs; Laj, PaoloWe investigate the formation and growth of charged aerosols clusters at Jungfraujoch, in the Swiss Alps (3580 m a.s.l.), the highest altitude site of the European EUCAARI project intensive campaign. Charged particles and clusters (0.5–1.8 nm) were measured from April 2008 to April 2009 and allowed the detection of nucleation events in this very specific environment (presence of free tropospheric air and clouds). We found that the naturally charged aerosol concentrations, which are dominated by the cluster size class, shows a strong diurnal pattern likely linked to valley breezes transporting surface layer ion precursors, presumably radon. Cosmic rays were found not to be the major ion source at the measurement site. However, at night, when air masses are more representative of free tropospheric conditions, we found that the cluster concentrations are still high. The charged aerosol size distribution and concentration are strongly influenced by the presence of clouds at the station. Clouds should be taken into account when deriving high altitude nucleation statistics. New particle formation occurs on average 17.5% of the measurement period and shows a weak seasonality with a minimum of frequency during winter, but this seasonality is enhanced when the data set is screened for periods when the atmospheric station is out of clouds. The role of ions in the nucleation process was investigated and we found that the ion-mediated nucleation explains 22.3% of the particle formation. The NPF events frequency is correlated with UV radiation but not with calculated H2SO4 concentrations, suggesting that other compounds such as organic vapors are involved in the nucleation and subsequently growth process. In fact, NPF events frequency also surprisingly increases with the condensational sink (CS), suggesting that at Jungfraujoch, the presence of condensing vapours probably coupled with high CS are driving the occurrence of NPF events. A strong link to the air mass path was also pointed out and events were observed to be frequently occurring in Eastern European air masses, which present the highest condensational sink. In these air masses, pre-existing cluster concentrations are more than three time larger than in other air masses during event days, and no new clusters formation is observed, contrarily to what is happening in other air mass types.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Results from the CERN pilot CLOUD experiment(Copernicus, 15.02.2010) Duplissy, Jonathan; Enghoff, Martin Bødker; Aplin, Karen L.; Arnold, Frank; Aufmhoff, Heinfried; Avngaard, Michael; Baltensperger, Urs; Bondo, Torsten; Bingham, Robert; Carslaw, Ken S.; Curtius, Joachim; David, A.; Fastrup, Bent; Gagné, Stéphanie; Hahn, F.; Harrison, Richerd Giles; Kellett, Barry; Kirkby, Jasper; Kulmala, Markku; Laakso, Lauri; Laaksonen, Ari; Lillestøl, Egil; Lockwood, Mike; Mäkelä, Jyrki Mikael; Makhmutov, Vladimir; Marsh, N. D.; Nieminen, Tuomo; Onnela, Antti; Pedersen, E.; Pedersen, Jens Olaf Pepke; Polny, Josef; Reichl, Udo; Seinfeld, John H.; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Svensmark, Henrik; Svensmark, Jacob; Veenhof, Rob; Verheggen, B.; Viisanen, Yrjö; Wagner, Paul E.; Wehrle, Günther; Weingartner, Ernest; Wex, Heike; Wilhelmsson, Mats; Winkler, Paul M.During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2O concentrations were typically around 106 cm−3 or less. The experimentally measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However, in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 °C).01A - Beitrag in wissenschaftlicher ZeitschriftPublikation The white-light humidified optical particle spectrometer (WHOPS) - a novel airborne system to characterize aerosol hygroscopicity(Copernicus, 2015) Rosati, Bernadette; Wehrle, Günther; Gysel, Martin; Zieger, Paul; Baltensperger, Urs; Weingartner, ErnestAerosol particles experience hygroscopic growth at enhanced relative humidity (RH), which leads to changes in their optical properties. We developed the white-light humidified optical particle spectrometer (WHOPS), a new instrument to investigate the particles' hygroscopic growth. Here we present a detailed technical description and characterization of the WHOPS in laboratory and field experiments. The WHOPS consists of a differential mobility analyzer, a humidifier/bypass and a white-light aerosol spectrometer (WELAS) connected in series to provide fast measurements of particle hygroscopicity at subsaturated RH and optical properties on airborne platforms. The WELAS employs a white-light source to minimize ambiguities in the optical particle sizing. In contrast to other hygroscopicity instruments, the WHOPS retrieves information of relatively large particles (i.e., diameter D > 280 nm), therefore investigating the more optically relevant size ranges. The effective index of refraction of the dry particles is retrieved from the optical diameter measured for size-selected aerosol samples with a well-defined dry mobility diameter. The data analysis approach for the optical sizing and retrieval of the index of refraction was extensively tested in laboratory experiments with polystyrene latex size standards and ammonium sulfate particles of different diameters. The hygroscopic growth factor (GF) distribution and aerosol mixing state is inferred from the optical size distribution measured for the size-selected and humidified aerosol sample. Laboratory experiments with pure ammonium sulfate particles revealed good agreement with Köhler theory (mean bias of ~3% and maximal deviation of 8% for GFs at RH = 95%). During first airborne measurements in the Netherlands, GFs (mean value of the GF distribution) at RH = 95% between 1.79 and 2.43 with a median of 2.02 were observed for particles with a dry diameter of 500 nm. This corresponds to hygroscopicity parameters (κ) between 0.25 and 0.75 with a median of 0.38. The GF distributions indicate externally mixed particles covering the whole range of GFs between ~1.0 and 3.0. On average, ~74% of the 500 nm particles had GFs > 1.5, ~15% had GF < 1.1 and the remaining ~1% showed values of 1.1 < GF < 1.5. The more hygroscopic mode sometimes peaked at GF > 2, indicating influence of sea-salt particles, consistent with previous ground-based particle hygroscopicity measurements in this area. The mean dry effective index of refraction for 500 nm particles was found to be rather constant with a value of 1.42 ± 0.04 (mean ± 1SD).01A - Beitrag in wissenschaftlicher Zeitschrift