Listen
Publikation Computational support to explore ternary solid dispersions of challenging drugs using coformer and hydroxypropyl cellulose(American Chemical Society, 10.10.2024) Niederquell, Andreas; Herzig, Susanne; Schönenberger, Monica; Stoyanov, Edmont; Kuentz, MartinA majority of drugs marketed in amorphous formulations have a good glass-forming ability, while compounds less stable in the amorphous state still pose a formulation challenge. This work explores ternary solid dispersions of two model drugs with a polymer (i.e., hydroxypropyl cellulose) and a coformer as stabilizing excipients. The aim was to introduce a computational approach by preselecting additives using solubility parameter intervals (i.e., overlap range of solubility parameter, ORSP) followed by more advanced COSMO-RS theory modeling. Thus, a mapping of calculated mixing enthalpy and melting points is proposed for in silico evaluation prior to hot melt extrusion. Following experimental testing of process feasibility, the selected formulations were tested for their physical stability using conventional bulk analytics and by confocal laser scanning and atomic force microscopy imaging. In line with the in silico screening, dl-malic and l-tartaric acid (20%, w/w) in HPC formulations showed no signs of early drug crystallization after 3 months. However, l-tartaric acid formulations displayed few crystals on the surface, which was likely a humidity-induced surface phenomenon. Although more research is needed, the conclusion is that the proposed computational small-scale extrusion approach of ternary solid dispersion has great potential in the formulation development of challenging drugs.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Gene editing of NCF1 loci is associated with homologous recombination and chromosomal rearrangements(Nature, 09.10.2024) Raimondi, Federica; Siow, Kah Mun; Wrona, Dominik; Fuster-García, Carla; Pastukhov, Oleksandr; Schmitz, Michael; Bargsten, Katja; Kissling, Lucas; Swarts, Daan C.; Andrieux, Geoffroy; Cathomen, Toni; Modlich, Ute; Jinek, Martin; Siler, Ulrich; Reichenbach, JanineCRISPR-based genome editing of pseudogene-associated disorders, such as p47phox-deficient chronic granulomatous disease (p47 CGD), is challenged by chromosomal rearrangements due to presence of multiple targets. We report that interactions between highly homologous sequences that are localized on the same chromosome contribute substantially to post-editing chromosomal rearrangements. We successfully employed editing approaches at the NCF1 gene and its pseudogenes, NCF1B and NCF1C, in a human cell line model of p47 CGD and in patient-derived human hematopoietic stem and progenitor cells. Upon genetic engineering, a droplet digital PCR-based method identified cells with altered copy numbers, spanning megabases from the edited loci. We attributed the high aberration frequency to the interaction between repetitive sequences and their predisposition to recombination events. Our findings emphasize the need for careful evaluation of the target-specific genomic context, such as the presence of homologous regions, whose instability can constitute a risk factor for chromosomal rearrangements upon genome editing.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Formulation and dermal delivery of a new active pharmaceutical ingredient in an in vitro wound model for the treatment of chronic ulcers(Elsevier, 09/2024) Thormann, Ursula; Marti, Selina; Lensmith, Elizabeth; Lanz, Michael; Herzig, Susanne; Naef, Reto; Imanidis, GeorgiosThe aim of this study was to investigate dermal delivery of the new active pharmaceutical ingredient (API) TOP-N53 into diabetic foot ulcer using an in vitro wound model consisting of pig ear dermis and elucidate the impact of drug formulation and wound dressing taking into consideration clinical relevance in the home care setting and possible bacterial infection. Different formulation approaches for the poorly water-soluble API including colloidal solubilization, drug micro-suspension and cosolvent addition were investigated; moreover, the effect of (micro-)viscosity of hydrogels used as primary wound dressing on delivery was assessed. Addition of Transcutol® P as cosolvent to water improved solubility and was significantly superior to all other approaches providing a sustained three-day delivery that reached therapeutic drug levels in the tissue. Solubilization in micelles or liposomes, on the contrary, did not boost delivery while micro-suspensions exhibited sedimentation on the tissue surface. Microbial contamination was responsible for considerable metabolism of the drug leading to tissue penetration of metabolites which may be relevant for therapeutic effect. Use of hydrogels under semi-occlusive conditions significantly reduced drug delivery in a viscosity-dependent fashion. Micro-rheologic analysis of the gels using diffusive wave spectroscopy confirmed the restricted diffusion of drug particles in the gel lattice which correlated with the obtained tissue delivery results. Hence, the advantages of hydrogel dressings from the applicatory characteristic point of view must be weighed against their adverse effect on drug delivery. The employed in vitro wound model was useful for the assessment of drug delivery and the development of a drug therapy concept for chronic diabetic foot ulcer. Mechanistic insights about formulation and dressing performance may be applied to drug delivery in other skin conditions such as digital ulcer.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Predictions of biorelevant solubility change during dispersion and digestion of lipid-based formulations(Elsevier, 09/2024) Ejskjær, Lotte; Holm, René; Kuentz, Martin; Box, Karl J.; Griffin, Brendan T.; O'Dwyer, Patrick J.Computational approaches are increasingly explored in development of drug products, including the development of lipid-based formulations (LBFs), to assess their feasibility for achieving adequate oral absorption at an early stage. This study investigated the use of computational pharmaceutics approaches to predict solubility changes of poorly soluble drugs during dispersion and digestion in biorelevant media. Concentrations of 30 poorly water-soluble drugs were determined pre- and post-digestion with in-line UV probes using the MicroDISS Profiler™. Generally, cationic drugs displayed higher drug concentrations post-digestion, whereas for non-ionized drugs there was no discernible trend between drug concentration in dispersed and digested phase. In the case of anionic drugs there tended to be a decrease or no change in the drug concentration post-digestion. Partial least squares modelling was used to identify the molecular descriptors and drug properties which predict changes in solubility ratio in long-chain LBF pre-digestion (R2 of calibration = 0.80, Q2 of validation = 0.64) and post-digestion (R2 of calibration = 0.76, Q2 of validation = 0.72). Furthermore, multiple linear regression equations were developed to facilitate prediction of the solubility ratio pre- and post-digestion. Applying three molecular descriptors (melting point, LogD, and number of aromatic rings) these equations showed good predictivity (pre-digestion R2 = 0.70, and post-digestion R2 = 0.68). The model developed will support a computationally guided LBF strategy for emerging poorly water-soluble drugs by predicting biorelevant solubility changes during dispersion and digestion. This facilitates a more data-informed developability decision making and subsequently facilitates a more efficient use of formulation screening resources.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Hydrophobic deep eutectic solvent (HDES) as oil phase in lipid-based drug formulations(Elsevier, 15.08.2024) Panbachi, Shaida; Beranek, Josef; Kuentz, MartinThere is increasing pharmaceutical interest in deep eutectic solvents not only as a green alternative to organic solvents in drug manufacturing, but also as liquid formulation for drug delivery. The present work introduces a hydrophobic deep eutectic solvent (HDES) to the field of lipid-based formulations (LBF). Phase behavior of a mixture with 2:1 M ratio of decanoic- to dodecanoic acid was studied experimentally and described by thermodynamic modelling. Venetoclax was selected as a hydrophobic model drug and studied by atomistic molecular dynamics simulations of the mixtures. As a result, valuable molecular insights were gained into the interaction networks between the different components. Moreover, experimentally the HDES showed greatly enhanced drug solubilization compared to conventional glyceride-based vehicles, but aqueous dispersion behavior was limited. Hence surfactants were studied for their ability to improve aqueous dispersion and addition of Tween 80 resulted in lowest droplet sizes and high in vitro drug release. In conclusion, the combination of HDES with surfactant(s) provides a novel LBF with high pharmaceutical potential. However, the components must be finely balanced to keep the integrity of the solubilizing HDES, while enabling sufficient dispersion and drug release.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Comparison of protein-like model particles fabricated by micro 3D printing to established standard particles(Elsevier, 08/2024) Amara, Ilias; Germershaus, Oliver; Lentes, Christopher; Sass, Steffen; Youmto, Stephany Mamdjo; Stracke, Jan Olaf; Clemens-Hemmelmann, Mirjam; Assfalg, AnaceliaInnovative analytical instruments and development of new methods has provided a better understanding of protein particle formation in biopharmaceuticals but have also challenged the ability to obtain reproducible and reliable measurements. The need for protein-like particle standards mimicking the irregular shape, translucent nature and near-to-neutral buoyancy of protein particles remained one of the hot topics in the field of particle detection and characterization in biopharmaceutical formulations. An innovative protein-like particle model has been developed using two photo polymerization (2PP) printing allowing to fabricate irregularly shaped particles with similar properties as protein particles at precise size of 50 µm and 150 µm, representative of subvisible particles and visible particles, respectively. A study was conducted to compare the morphological, physical, and optical properties of artificially generated protein particles, polystyrene spheres, ETFE, and SU-8 particle standards, along with newly developed protein-like model particles manufactured using 2PP printing. Our results suggest that 2PP printing can be used to produce protein-like particle standards that might facilitate harmonization and standardization of subvisible and visible protein particle characterization across laboratories and organizations.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A study of hydrophobic domain formation of polymeric drug precipitation inhibitors in aqueous solution(Elsevier, 01.07.2024) Zeneli, Egis; Lange, Justus Johann; Holm, René; Kuentz, MartinDespite the widespread use of polymers as precipitation inhibitors in supersaturating drug formulations, the current understanding of their mechanisms of action is still incomplete. Specifically, the role of hydrophobic drug interactions with polymers by considering possible supramolecular conformations in aqueous dispersion is an interesting topic. Accordingly, this study investigated the tendency of polymers to create hydrophobic domains, where lipophilic compounds may nest to support drug solubilisation and supersaturation. Fluorescence spectroscopy with the environment-sensitive probe pyrene was compared with atomistic molecular dynamics simulations of the model drug fenofibrate (FENO). Subsequently, kinetic drug supersaturation and thermodynamic solubility experiments were conducted. As a result, the different polymers showed hydrophobic domain formation to a varying degree and the molecular simulations supported interpretation of fluorescence spectroscopy data. Molecular insights were gained into the conformational structure of how the polymers interacted with FENO in solution phase, which apart from nucleation and crystal growth effects, determined drug concentrations in solution. Notable was that even at the lowest polymer concentration of 0.01 %, w/v, there were polymer-specific solubilisation effects of FENO observed and the resulting reduction in apparent drug supersaturation provided relevant knowledge both from a mechanistic and practical perspective.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Predictive computational models for assessing the impact of co-milling on drug dissolution(Elsevier, 07/2024) Pätzmann, Nicolas; O'Dwyer, Patrick J.; Beránek, Josef; Kuentz, Martin; Griffin, Brendan T.Co-milling is an effective technique for improving dissolution rate limited absorption characteristics of poorly water-soluble drugs. However, there is a scarcity of models available to forecast the magnitude of dissolution rate improvement caused by co-milling. Therefore, this study endeavoured to quantitatively predict the increase in dissolution by co-milling based on drug properties. Using a biorelevant dissolution setup, a series of 29 structurally diverse and crystalline drugs were screened in co-milled and physically blended mixtures with Polyvinylpyrrolidone K25. Co-Milling Dissolution Ratios after 15 min (COMDR15 min) and 60 min (COMDR60 min) drug release were predicted by variable selection in the framework of a partial least squares (PLS) regression. The model forecasts the COMDR15 min (R2 = 0.82 and Q2 = 0.77) and COMDR60 min (R2 = 0.87 and Q2 = 0.84) with small differences in root mean square errors of training and test sets by selecting four drug properties. Based on three of these selected variables, applicable multiple linear regression equations were developed with a high predictive power of R2 = 0.83 (COMDR15 min) and R2 = 0.84 (COMDR60 min). The most influential predictor variable was the median drug particle size before milling, followed by the calculated drug logD6.5 value, the calculated molecular descriptor Kappa 3 and the apparent solubility of drugs after 24 h dissolution. The study demonstrates the feasibility of forecasting the dissolution rate improvements of poorly water-solube drugs through co-milling. These models can be applied as computational tools to guide formulation in early stage development.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Amorphous solid dispersion of a binary formulation with felodipine and HPMC for 3D printed floating tablets(Elsevier, 06/2024) Mora-Castaño, Gloria; Millán-Jiménez, Mónica; Niederquell, Andreas; Schönenberger, Monica; Shojaie, Fatemeh; Kuentz, Martin; Caraballo, IsidoroThis study focuses on the combination of three-dimensional printing (3DP) and amorphous solid dispersion (ASD) technologies for the manufacturing of gastroretentive floating tablets. Employing hot melt extrusion (HME) and fused deposition modeling (FDM), the study investigates the development of drug-loaded filaments and 3D printed (3DP) tablets containing felodipine as model drug and hydroxypropyl methylcellulose (HPMC) as the polymeric carrier. Prior to fabrication, solubility parameter estimation and molecular dynamics simulations were applied to predict drug-polymer interactions, which are crucial for ASD formation. Physical bulk and surface characterization complemented the quality control of both drug-loaded filaments and 3DP tablets. The analysis confirmed a successful amorphous dispersion of felodipine within the polymeric matrix. Furthermore, the low infill percentage and enclosed design of the 3DP tablet allowed for obtaining low-density systems. This structure resulted in buoyancy during the entire drug release process until a complete dissolution of the 3DP tablets (more than 8 h) was attained. The particular design made it possible for a single polymer to achieve a zero-order controlled release of the drug, which is considered the ideal kinetics for a gastroretentive system. Accordingly, this study can be seen as an advancement in ASD formulation for 3DP technology within pharmaceutics.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Bryophyllum pinnatum inhibits oxytocin and vasopressin signaling in myometrial cells(Thieme, 10.04.2024) Zurfluh, Leonie; Duvaud, Lauriane; Inci, Nejla; Potterat, Olivier; Simões-Wüst, Ana Paula; Mosbacher, JohannesThe medicinal plant Bryophyllum pinnatum was previously shown to block oxytocin (OT)-induced signals in myometrial cells, consistent with its tocolytic effect observed in patients. OT activates not only OT receptors but also V 1A receptors, two receptors with high receptor homology that are both expressed in the myometrium and play a crucial role in myometrial contraction signaling. We aimed to study the molecular pharmacology of B. pinnatum herbal preparations using specific receptor ligands, the human myometrial cell line hTERT‑C3, and cell lines expressing recombinant human OT and V 1A receptors. We found that press juice from B. pinnatum (BPJ) inhibits both OT- and vasopressin (AVP)-induced intracellular calcium increases in hTERT‑C3 myometrial cells. In additional assays performed with cells expressing recombinant receptors, BPJ also inhibited OT and V 1A receptor-mediated signals with a similar potency (IC 50 about 0.5 mg/mL). We further studied endogenous OT- and AVP-sensitive receptors in hTERT‑C3 cells and found that OT and AVP stimulated those receptors with similar potency (EC50 of ~ 1 nM), suggesting expression of both receptor subtypes. This interpretation was corroborated by the antagonist potencies of atosiban and relcovaptan that we found. However, using qPCR, we almost exclusively found expression of OT receptors suggesting a pharmacological difference between recombinant OT receptors and native receptors expressed in hTERT‑C3 cells. In conclusion, we show that B. pinnatum inhibits both OT and AVP signaling, which may point beyond its tocolytic effects to other indications involving a disbalance in the vasopressinergic system.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Water-mediated phase transformations of posaconazole. An intricate jungle of crystal forms(Elsevier, 04/2024) Guidetti, Matteo; Hilfiker, Rolf; Kuentz, Martin; Bauer-Brandl, Annette; Blatter, FritzPosaconazole is a broad-spectrum antifungal agent exhibiting rich polymorphism. Up to now, a total of fourteen different crystal forms have been reported, sometimes with an ambiguous nomenclature, but less is known about their properties and stability relationships. Investigating the solid-state of a drug compound is essential to identify the most stable form under working conditions and to prevent the risk of undesired solid-phase transformations under processing and storage. In this paper, we study posaconazole polymorphism by providing a description of its polymorphs, hydrates, and solvates. Powder X-ray diffraction (PXRD), dynamic vapor sorption (DVS), spectroscopic and thermal techniques were employed to characterize the different forms. In addition, the solid-phase transformations of posaconazole in aqueous suspensions were studied by means of Raman microscopy. Surprisingly, we found that Form S, the crystal form contained in the marketed oral suspension, is not the most stable form in water. Form S readily converts to a more stable hydrate, i.e. Form A, after storage in water for two weeks. In the commercial oral formulation the conversion between the two forms is prevented by the presence of polysorbate 80. Such insights into the stabilizing excipient effects beyond particle dispersion are critical to formulators.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation High loading of lipophilic compounds in mesoporous silica for improved solubility and dissolution performance(Elsevier, 04/2024) Brenner, Marvin Benedikt; Wüst, Matthias; Kuentz, Martin; Wagner, Karl G.Loading poorly soluble active pharmaceutical ingredients (API) into mesoporous silica can enable API stabilization in non-crystalline form, which leads to improved dissolution. This is particularly beneficial for highly lipophilic APIs (log D7.4 > 8) as these drugs often exhibit limited solubility in dispersion forming carrier polymers, resulting in low drug load and reduced solid state stability. To overcome this challenge, we loaded the highly lipophilic natural products coenzyme Q10 (CoQ10) and astaxanthin (ASX), as well as the synthetic APIs probucol (PB) and lumefantrine (LU) into the mesoporous silica carriers Syloid® XDP 3050 and Silsol® 6035. All formulations were physically stable in their non-crystalline form and drug loads of up to 50 % were achieved. At increasing drug loads, a marked increase in equilibrium solubility of the active ingredients in biorelevant medium was detected, leading to improved performance during biorelevant biphasic dissolution studies (BiPHa + ). Particularly the natural products CoQ10 and ASX showed substantial benefits from being loaded into mesoporous carrier particles and clearly outperformed currently available commercial formulations. Performance differences between the model compounds could be explained by in silico calculations of the mixing enthalpy for drug and silica in combination with an experimental chromatographic method to estimate molecular interactions.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Host cell protein networks as a novel co‐elution mechanism during protein. A chromatography(Wiley, 07.03.2024) Panikulam, Sherin; Hanke, Alexander; Kroener, Frieder; Karle, Anette; Anderka, Oliver; Villiger, Thomas; Lebesgue, NicolasHost cell proteins (HCPs) are process-related impurities of therapeutic proteins produced in for example, Chinese hamster ovary (CHO) cells. Protein A affinity chromatography is the initial capture step to purify monoclonal antibodies or Fc-based proteins and is most effective for HCP removal. Previously proposed mechanisms that contribute to co-purification of HCPs with the therapeutic protein are either HCP-drug association or leaching from chromatin heteroaggregates. In this study, we analyzed protein A eluates of 23 Fc-based proteins by LC-MS/MS to determine their HCP content. The analysis revealed a high degree of heterogeneity in the number of HCPs identified in the different protein A eluates. Among all identified HCPs, the majority co-eluted with less than three Fc-based proteins indicating a drug-specific co-purification for most HCPs. Only ten HCPs co-purified with over 50% of the 23 Fc-based proteins. A correlation analysis of HCPs identified across multiple protein A eluates revealed their co-elution as HCP groups. Functional annotation and protein interaction analysis confirmed that some HCP groups are associated with protein-protein interaction networks. Here, we propose an additional mechanism for HCP co-elution involving protein-protein interactions within functional networks. Our findings may help to guide cell line development and to refine downstream purification strategies.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Developing an in vitro lipolysis model for real-time analysis of drug concentrations during digestion of lipid-based formulations(Elsevier, 03/2024) Ejskjær, Lotte; O'Dwyer, Patrick J.; Ryan, Callum D.; Holm, René; Kuentz, Martin; Box, Karl J.; Griffin, Brendan T.Understanding the effect of digestion on oral lipid-based drug formulations is a critical step in assessing the impact of the digestive process in the intestine on intraluminal drug concentrations. The classical pH-stat in vitro lipolysis technique has traditionally been applied, however, there is a need to explore the establishment of higher throughput small-scale methods. This study explores the use of alternative lipases with the aim of selecting digestion conditions that permit in-line UV detection for the determination of real-time drug concentrations. A range of immobilised and pre-dissolved lipases were assessed for digestion of lipid-based formulations and compared to digestion with the classical source of lipase, porcine pancreatin. Palatase® 20000 L, a purified liquid lipase, displayed comparable digestion kinetics to porcine pancreatin and drug concentration determined during digestion of a fenofibrate lipid-based formulation were similar between methods. In-line UV analysis using the MicroDISS ProfilerTM demonstrated that drug concentration could be monitored during one hour of dispersion and three hours of digestion for both a medium- and long-chain lipid-based formulations with corresponding results to that obtained from the classical lipolysis method. This method offers opportunities exploring the real-time dynamic drug concentration during dispersion and digestion of lipid-based formulations in a small-scale setup avoiding artifacts as a result of extensive sample preparation.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Enzymatic degradation pattern of polysorbate 20 impacts interfacial properties of monoclonal antibody formulations(Elsevier, 01/2024) Gregoritza, Kathrin; Theodorou, Christos; Heitz, Marc; Graf, Tobias; Germershaus, Oliver; Gregoritza, ManuelPolysorbate 20 (PS20) is widely used to maintain protein stability in biopharmaceutical formulations. However, PS20 is susceptible to hydrolytic degradation catalyzed by trace amounts of residual host cell proteins present in monoclonal antibody (mAb) formulations. The resulting loss of intact surfactant and the presence of PS20 degradation products, such as free fatty acids (FFAs), may impair protein stability. In this study, two hydrolytically-active immobilized lipases, which primarily targeted either monoester or higher-order ester species in PS20, were used to generate partially-degraded PS20. The impact of PS20 degradation pattern on critical micelle concentration (CMC), surface tension, interfacial rheology parameters and agitation protection was assessed. CMC was slightly increased upon monoester degradation, but significantly increased upon higher-order ester degradation. The PS20 degradation pattern also significantly impacted the dynamic surface tension of a mAb formulation, whereas changes in the equilibrium surface tension were mainly caused by the adsorption of FFAs onto the air-water interface. In an agitation protection study, monoester degradation resulted in the formation of soluble mAb aggregates and proteinaceous particles, suggesting that preferential degradation of PS20 monoester species can significantly impair mAb stability. Additional mAbs should be tested in the future to assess the impact of the protein format.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Comparison of the liquisolid technique and co-milling for loading of a poorly soluble drug in inorganic porous excipients(Elsevier, 01/2024) Ogadah, Chiazor Ugo; Mrštná, Kristýna; Matysová, Ludmila; Müllertz, Anette; Rades, Thomas; Niederquell, Andreas; Šklubalová, Zdenka; Vraníková, BarboraDrug loading into mesoporous carriers may help to improve the dissolution of poorly aqueous-soluble drugs. However, both preparation method and carrier properties influence loading efficiency and drug release. Accordingly, this study aimed to compare two preparation methods: formulation into liquisolid systems (LSS) and co-milling for their efficiency in loading the poorly soluble model drug cyclosporine A (CyA) into mesoporous magnesium aluminometasilicate Neusilin® US2 (NEU) or functionalized calcium carbonate (FCC). Scanning electron microscopy was used to visualize the morphology of the samples and evaluate the changes that occurred during the drug loading process. The solid-state characteristics and physical stability of the formulations, prepared at different drug concentrations, were determined using X-ray powder diffraction. In vitro release of the drug was evaluated in biorelevant media simulating intestinal fluid. The obtained results revealed improved drug release profiles of the formulations when compared to the milled (amorphous) CyA alone. The dissolution of CyA from LSS was faster in comparison to the co-milled formulations. Higher drug release was achieved from NEU than FCC formulations presumably due to the higher pore volume and larger surface area of NEU.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Evaluierung von Carbonatpuffer für die Wirkstofffreisetzung aus Tabletten(Hochschule für Life Sciences FHNW, 2024) Loureiro Cunha, Margarida; Lanz, Michael; Imanidis, Georgios11 - Studentische ArbeitPublikation Lipid based formulations as supersaturating oral delivery systems. From current to future industrial applications(Elsevier, 01.10.2023) Holm, René; Kuentz, Martin; Ilie-Spiridon, Alexandra-Roxana; Griffin, Brendan T.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Experimental, modeling and molecular dynamics simulation of codeine phosphate dissolution in N-methyl-2-pyrrolidone + ethanol(TUOMS Press, 20.09.2023) Rezaei, Homa; Kuentz, Martin; Zhao, Hongkun; Rahimpour, Elaheh; Jouyban, AbolghasemBackground: There is only limited data for solubility of codeine phosphate in binary systems available, which comes with uncertainties about the prediction accuracy of common thermodynamic models. Methods: This study investigated the codeine phosphate dissolution in N-methyl-2-pyrrolidone(NMP) and ethanol system using shake-flask method and mathematically described generated data by different thermodynamic models. The density as another property was also determined and fitted to the results of the Jouyban-Acree equation. The mean relative deviations were obtained to confirm the model’s accuracy. Moreover, ΔHº, ΔSº, and ΔGº of the dissolution of codeine phosphate in the NMP and ethanol system were calculated using the desired equations at Thm. Results: The dissolution process of codeine phosphate was identified as endotherm, the solubility in the binary mixtures was best at higher mass fractions of NMP and finally, the model predictions were deemed as excellent based on a mean relative deviation that was generally below eight percent. Conclusion: The results of this study could expand the available solubility database for codeine phosphate.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Leveraging the use of in vitro and computational methods to support the development of enabling oral drug products. An InPharma commentary(Elsevier, 01.09.2023) Reppas, Christos; Kuentz, Martin; Bauer-Brandl, Annette; Carlert, Sara; Dallmann, André; Dietrich, Shirin; Dressman, Jennifer; Ejskjaer, Lotte; Frechen, Sebastian; Guidetti, Matteo; Holm, René; Holzem, Florentin Lukas; Karlsson, Εva; Kostewicz, Edmund; Panbachi, Shaida; Paulus, Felix; Senniksen, Malte Bøgh; Stillhart, Cordula; Turner, David B.; Vertzoni, Maria; Vrenken, Paul; Zöller, Laurin; Griffin, Brendan T.; O'Dwyer, Patrick J.01A - Beitrag in wissenschaftlicher Zeitschrift