Listen
Publikation Citizen science-based waste diaries. An exploratory case study of household waste in Switzerland(MDPI, 30.04.2024) Breitenmoser, Lena; Behner, David; Baertsch, Alessia; Mondardini, Maria Rosa; Hugi, ChristophSustainable Development Goal 12 (SDG 12) and national waste reduction goals require frequent waste analyses for monitoring and governance decisions. We developed and tested a citizen science (CS)-based household waste diary for ten consecutive days with 89 volunteer households in Switzerland as a complementary monitoring option to official composition analyses. Discrepancies between the CS-based household diary data and the official composition analyses ranged between 55–65% less reported waste quantities for minerals, compound products, and plastics and 80–90% less for paper, avoidable food waste, and glass. Household waste diaries should be digitalized and prolonged to 21–28 days, and volunteers from different demographic groups are needed to produce stratified, representative results. We conclude that a hybrid CS study design involving waste composition analyses and waste diaries could reduce self-reporting biases while increasing the monitoring frequencies of household waste compositions. CS-based hybrid household waste projects can be a powerful means to complement the measures identified in the 2022 Swiss action plan against food waste and for data reporting for the SDG 12.3 Food Waste Index.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Scattered and transmitted light as surrogates for activated carbon residual in advanced wastewater treatment processes. Investigating the influence of particle size(Elsevier, 04/2024) Kirchen, Franziska; Fundneider, Thomas; Gimmel, Louis; Thomann, Michael; Pulfer, Michael; Lackner, SusanneThe use of powdered activated carbon (PAC) is a common process in advanced wastewater treatment to remove micropollutants. Retention and separation of PAC is essential as PAC loaded with micropollutants should not be released into the environment. Determining the activated carbon (AC) residual in the effluent poses a challenge, as there is currently no on-line measurement method. In this study, the correlation between turbidity, measured by scattered light, and absorption at wavelength of 550 nm (Absorption550 nm), measured by transmitted light, was investigated in relation to the AC residue. Linear correlations for turbidity (R2 = 0.95) and Absorption550 nm (R2 = 1.00) to AC concentrations were observed in both laboratory and full-scale experiments in a pilot plant where superfine PAC was added prior to Pile Cloth Media Filtration (PCMF). Decreasing the particle size (d50) while maintaining the same AC concentration leads to increased turbidity: Therefore, a fourfold reduction in d50 results in a 2- to 3-fold increase in turbidity, whereas a 30-fold reduction in d50 leads to a 6-to 8-fold increase. Furthermore, the original wastewater turbidity led to a parallel shift in the linear correlation between turbidity and AC. Coagulant doses of up to 400 mg Me3+/g AC resulted in a 50% reduction in turbidity. However, higher concentrations from 400 to 1,000 mg Me3+/g AC resulted in increased turbidity with only a 30% reduction compared to the initial turbidity. The study also highlights the significance of AC particle size in optical measurements, impacting result accuracy.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Circularity and environmental sustainability of organic and printed electronics(Jenny Stanford Publishing, 2024) Le Blévennec, Kévin; Hengevoss, Dirk; Zimmermann, Yannick-Serge; Brun, Nadja; Hugi, Christoph; Lenz, Markus; Corvini, Philippe; Fent, Karl; Nisato, Giovanni; Lupo, Donald; Rudolf, SimoneIn this chapter, the possible role and impact of organic and printed electronics (OPE) in a transition toward a circular economy and more sustainable society will be discussed. The learning targets are twofold: first, understanding main environmental issues associated with the emerging field of OPE, and second, identifying, through a systemic perspective, the enabling potential of these technologies.04A - Beitrag SammelbandPublikation Life cycle assessment of a novel production route for scandium recovery from bauxite residues(Elsevier, 2024) Hengevoss, Dirk; Misev, Victor; Feigl, Viktória; Fekete-Kertész, Ildikó; Molnár, Mónika; Balomenos, Efthymios; Davris, Panagiotis; Hugi, Christoph; Lenz, MarkusScandium (Sc) has various technological applications, but the concentrations of Sc in ores are low. Both, the mining of low concentrated Sc and the production of industrial-grade Sc are a heavy burden on the environment. Bauxite residue (BR) from alumina production represents one of the major sources of Sc in Europe (Ochsenkühn-Petropulu et al., 1994). The goal of this study is to assess the environmental impacts from cradle to gate of a novel production route developed in the Scandium Aluminium Europe project (SCALE) to extract Sc at concentrations <100 ppm from BR, to concentrate and upgrade it to pure ScF3 and Sc2O3 and ultimately to refine it to an aluminium scandium master alloy with 2 % Sc mass fraction (AlSc2 %). Results show that the global warming potential (GWP), measured in CO2-eq per kg Sc2O3, generated with the novel route is about half the GWP of the state-of-the-art Sc2O3 production from rare earth tailings when applying equal allocation principles. The initial process step to dissolve BR and extract Sc consumes elevated amounts of acid and energy and is responsible for at least 80 % of the route’s total environmental impact. The amount of the generated filter cake (FC) is equal to the amount of the BR input and is a potential resource for cement clinker production. The ecotoxicological study indicates that both FC and BR are slightly ecotoxic.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Silber und Indium Recycling aus Perowskit-Photovoltaikzellen mittels «Layer-by-Layer» Membranen(Hochschule für Life Sciences FHNW, 2024) Müller, Tobias; Lenz, Markus11 - Studentische ArbeitPublikation KVI-Konformität in der Nachhaltigkeitsberichterstattung der IWB. Analyse und Ergänzungen(Hochschule für Life Sciences FHNW, 2024) Heuberger, Noomi; Hengevoss, Dirk; Industrielle Werke Basel (IWB)11 - Studentische ArbeitPublikation Machbarkeitsstudie zur Wiederverwertung von Kupfer und Plastik aus Kabelresten(Hochschule für Life Sciences FHNW, 2024) Dahinden, Jonas; Lenz, Markus; Recycling Huber11 - Studentische ArbeitPublikation The sulfonamide-resistance dihydropteroate synthase gene is crucial for efficient biodegradation of sulfamethoxazole by Paenarthrobacter species(Springer, 13.07.2023) Wu, Tong; Guo, Sheng-Zhi; Zhu, Hai-Zhen; Yan, Lei; Liu, Zhi-Pei; Li, De-Feng; Jiang, Cheng-Ying; Corvini, Philippe; Shen, Xi-Hui; Liu, Shuang-Jiang01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors(Springer, 12.07.2023) Suleiman, Marcel; Demaria, Francesca; Zimmardi, Cristina; Kolvenbach, Boris; Corvini, PhilippeAbstract Pharmaceuticals are of concern to our planet and health as they can accumulate in the environment. The impact of these biologically active compounds on ecosystems is hard to predict, and information on their biodegradation is necessary to establish sound risk assessment. Microbial communities are promising candidates for the biodegradation of pharmaceuticals such as ibuprofen, but little is known yet about their degradation capacity of multiple micropollutants at higher concentrations (100 mg/L). In this work, microbial communities were cultivated in lab-scale membrane bioreactors (MBRs) exposed to increasing concentrations of a mixture of six micropollutants (ibuprofen, diclofenac, enalapril, caffeine, atenolol, paracetamol). Key players of biodegradation were identified using a combinatorial approach of 16S rRNA sequencing and analytics. Microbial community structure changed with increasing pharmaceutical intake (from 1 to 100 mg/L) and reached a steady-state during incubation for 7 weeks on 100 mg/L. HPLC analysis revealed a fluctuating but significant degradation (30–100%) of five pollutants (caffeine, paracetamol, ibuprofen, atenolol, enalapril) by an established and stable microbial community mainly composed of Achromobacter, Cupriavidus, Pseudomonas and Leucobacter. By using the microbial community from MBR1 as inoculum for further batch culture experiments on single micropollutants (400 mg/L substrate, respectively), different active microbial consortia were obtained for each single micropollutant. Microbial genera potentially responsible for degradation of the respective micropollutant were identified, i.e. Pseudomonas sp. and Sphingobacterium sp. for ibuprofen, caffeine and paracetamol, Sphingomonas sp. for atenolol and Klebsiella sp. for enalapril. Our study demonstrates the feasibility of cultivating stable microbial communities capable of degrading simultaneously a mixture of highly concentrated pharmaceuticals in lab-scale MBRs and the identification of microbial genera potentially responsible for the degradation of specific pollutants. Key points • Multiple pharmaceuticals were removed by stable microbial communities. • Microbial key players of five main pharmaceuticals were identified.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Direct ammonium oxidation to nitrogen gas (Dirammox) in Alcaligenes strain HO-1: the electrode role(Elsevier, 07/2023) Pous, Narcís; Bañeras, Lluis; Corvini, Philippe; Liu, Shuang-Jiang; Puig, Sebastià01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Transforming an esterase into an enantioselective catecholase through bioconjugation of a versatile metal-chelating inhibitor(Royal Society of Chemistry, 20.06.2023) Fernandez-Lopez, Laura; Cea-Rama, Isabel; Alvarez-Malmagro, Julia; Ressmann, Anna K.; Gonzalez-Alfonso, Jose L.; Coscolín, Cristina; Shahgaldian, Patrick; Plou, Francisco J.; Modregger, Jan; Pita, Marcos; Sanz-Aparicio, Julia; Ferrer, ManuelMetal complexes introduced into esterase enzyme scaffolds can generate versatile biomimetic catalysts endowed with oxidoreductase activity.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Sex blind. Bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies(Frontiers Media, 16.06.2023) King, Alex C.; Zenker, ArminThe sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Per- and polyfluoroalkyl substances (PFASs) registered under REACH - what can we learn from the submitted data and how important will mobility be in PFASs hazard assessment?(Elsevier, 15.06.2023) Rudin, Elvira; Glüge, Juliane; Scheringer, Martin01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Occupational health risk assessment for wastewater treatment and reuse in Kanpur, India(MDPI, 07.06.2023) Babalola, Folake Monsurat; Breitenmoser, Lena; Furlong, Claire; Campling, Paul; Hooijmans, Christine MariaThe treatment and reuse of wastewater for irrigation can lead to occupational health risks for sewage treatment plant (STP) workers and farmers. Sanitation Safety Planning (SSP) is an approach which can be used to measure and mitigate these risks. This paper explores what impact a novel secondary treatment process, consisting of an integrated permeate channel (IPC) membrane combined with a constructed wetland plus, has on the occupational health risks compared with the existing activated sludge wastewater treatment process and reuse system in Kanpur, Uttar Pradesh. A mixed methodology was used, which included key informant interviews, structured observations, and E. coli analysis. This data was used to undertake semi-quantitative risk assessments following the SSP approach. The novel secondary treatment increased the number of health risks which the STP workers were exposed to, but the severity of the risks was lower. This was due to the differences in treatment processes and infrastructures. The number of health risks for the farmers decreased both in number and severity. For their children, the severity of the health impacts decreased. These changes were due to the increase in the microbiological quality of the irrigation water. This study highlights the potential of using a semi-quantitative risk assessment to assess the occupational health impacts of using novel treatment technologies.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Large‐scale eDNA monitoring of multiple aquatic pathogens as a tool to provide risk maps for wildlife diseases(Wiley, 11.05.2023) Sieber, Natalie; King, Alex; Krieg, Raphael; Zenker, Armin; Vorburger, Christoph; Hartikainen, HannaMultiple parasites and pathogens cause disease in aquatic wildlife and in aquaculture species, generating a need for monitoring and management. Conventional disease monitoring methods involve laborious, costly, and invasive capture and examination of host species, and require specialized expertise for every host and pathogen of interest. Environmental DNA could provide simultaneous occurrence data for multiple pathogens across different host taxa, valuable for using parasite diversity as, for example, a bioindicator of ecosystem disturbance. Here, we tested the potential for simultaneous detection of four wildlife pathogens in water samples from 280, mainly riverine, sites across Switzerland. We targeted the crayfish pathogen, the amphibian pathogen Batrachochytrium dendrobatidis, and the fish pathogens Saprolegnia parasitica and Tetracapsuloides bryosalmonae. The eDNA detection showed a widespread distribution of A. astaciS. parasitica T. bryosalmonae A. astaci and T. bryosalmonae were not detected in some alpine river catchments. B. dendrobatidis was detected only rarely, which was expected since the sampling did not target amphibian breeding sites. Co‐detection rates were higher in rivers than in lakes, likely reflecting the habitat preferences and distributions of the host species. We discuss the advantages and limitations of eDNA‐based pathogen monitoring and list a set of recommendations for managers. Our study illustrates how eDNA‐based techniques can monitor several pathogen species concurrently, thus facilitating more comprehensive disease monitoring schemes. Combined with metabarcoding approaches in the future, eDNA‐based sampling and detection can facilitate the incorporation of parasite and pathogen occurrence and diversity as an indicator for aquatic ecosystem health, and for revealing the hidden biodiversity and structure of parasite communities.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Innovative technology of biscuit production based on the use of secondary products of soybean processing(Oles Honchar Dnipro National University, 25.04.2023) Korkach, Hanna V.; Kotuzaki, Olena M.; Breitenmoser, Lena; Behner, David; Hugi, Christoph; Krusir, Galina V.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation From trace to pure. Pilot-scale scandium recovery from TiO2 acid waste(American Chemical Society, 06.04.2023) Hedwig, Sebastian; Yagmurlu, Bengi; Peters, Edward Michael; Misev, Victor; Hengevoss, Dirk; Dittrich, Carsten; Forsberg, Kerstin; Constable, Edwin C.; Lenz, Markus01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Organic solvent free PbI2 recycling from perovskite solar cells using hot water(Elsevier, 05.04.2023) Schmidt, Felix; Amrein, Meret; Hedwig, Sebastian; Kober-Czerny, Manuel; Paracchino, Adriana; Holappa, Ville; Suhonen, Riikka; Schäffer, Andreas; Constable, Edwin C.; Snaith, Henry J.; Lenz, MarkusPerovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies’ commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 – 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites’ end-of-life.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Enzymes for consumer products to achieve climate neutrality(Oxford University Press, 15.03.2023) Molina-Espeja, Patricia; Sanz-Aparicio, Julia; Golyshin, Peter N.; Robles-Martín, Ana; Guallar, Víctor; Beltrametti, Fabrizio; Müller, Markus; Yakimov, Michail M.; Modregger, Jan; van Logchem, Moniec; Corvini, Philippe; Shahgaldian, Patrick; Degering, Christian; Wieland, Susanne; Timm, Anne; de Carvalho, Carla C. C. R.; Re, Ilaria; Daniotti, Sara; Thies, Stephan; Jaeger, Karl-Erich; Chow, Jennifer; Streit, Wolfgang R.; Lottenbach, Roland; Rösch, Rainer; Ansari, Nazanin; Ferrer, ManuelAbstract Today, the chemosphere’s and biosphere’s compositions of the planet are changing faster than experienced during the past thousand years. CO2 emissions from fossil fuel combustion are rising dramatically, including those from processing, manufacturing and consuming everyday products; this rate of greenhouse gas emission (36.2 gigatons accumulated in 2022) is raising global temperatures and destabilizing the climate, which is one of the most influential forces on our planet. As our world warms up, our climate will enter a period of constant turbulence, affecting more than 85% of our ecosystems, including the delicate web of life on these systems, and impacting socioeconomic networks. How do we deal with the green transition to minimize climate change and its impacts while we are facing these new realities? One of the solutions is to use renewable natural resources. Indeed, nature itself, through the working parts of its living systems, the enzymes, can significantly contribute to achieve climate neutrality and good ecological/biodiversity status. Annually they can help decreasing CO2 emissions by 1–2.5 billion-tons, carbon demand by about 200 million-tons, and chemical demand by about 90 million-tons. With current climate change goals, we review the consequences of climate change at multiple scales and how enzymes can counteract or mitigate them. We then focus on how they mobilize sustainable and greener innovations in consumer products that have a high contribution to global carbon emissions. Finally, key innovations and challenges to be solved at the enzyme and product levels are discussed.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Enzymes for consumer products to achieve climate neutrality(Oxford University Press, 15.03.2023) Molina-Espeja, Patricia; Sanz-Aparicio, Julia; Golyshin, Peter N.; Robles-Martín, Ana; Guallar, Víctor; Beltrametti, Fabrizio; Müller, Markus; Yakimov, Michail M.; Modregger, Jan; van Logchem, Moniec; Corvini, Philippe; Shahgaldian, Patrick; Degering, Christian; Wieland, Susanne; Timm, Anne; de Carvalho, Carla C. C. R.; Re, Ilaria; Daniotti, Sara; Thies, Stephan; Jaeger, Karl-Erich; Chow, Jennifer; Streit, Wolfgang R.; Lottenbach, Roland; Rösch, Rainer; Ansari, Nazanin; Ferrer, ManuelToday, the chemosphere’s and biosphere’s compositions of the planet are changing faster than experienced during the past thousand years. CO2 emissions from fossil fuel combustion are rising dramatically, including those from processing, manufacturing and consuming everyday products; this rate of greenhouse gas emission (36.2 gigatons accumulated in 2022) is raising global temperatures and destabilizing the climate, which is one of the most influential forces on our planet. As our world warms up, our climate will enter a period of constant turbulence, affecting more than 85% of our ecosystems, including the delicate web of life on these systems, and impacting socioeconomic networks. How do we deal with the green transition to minimize climate change and its impacts while we are facing these new realities? One of the solutions is to use renewable natural resources. Indeed, nature itself, through the working parts of its living systems, the enzymes, can significantly contribute to achieve climate neutrality and good ecological/biodiversity status. Annually they can help decreasing CO2 emissions by 1–2.5 billion-tons, carbon demand by about 200 million-tons, and chemical demand by about 90 million-tons. With current climate change goals, we review the consequences of climate change at multiple scales and how enzymes can counteract or mitigate them. We then focus on how they mobilize sustainable and greener innovations in consumer products that have a high contribution to global carbon emissions. Finally, key innovations and challenges to be solved at the enzyme and product levels are discussed.01A - Beitrag in wissenschaftlicher Zeitschrift