Listen
Publikation ABC transporters and xenobiotic defense systems in early life stages of rainbow trout (Oncorhynchus mykiss)(Elsevier, 02.03.2016) Kropf, Christian; Segner, Helmut; Fent, KarlEmbryos of oviparous fish, in contrast to (ovo) viviparous species, develop in the aquatic environment, and therefore need solute transport systems at their body surfaces for maintaining internal homeostasis and defending against potentially harmful substances. We hypothesized that solute transporters undergo changes in tissue distribution from the embryo to the larval stage. We therefore studied the mRNA profiles of eight ABC transporters (abcb1a, abcb1b, abcc1, abcc2, abcc3, abcc4, abcc5, abcg2) and three solute carriers (oatp1d, putative oatp2 putative, mate1) in different body regions (head, yolk sac epithelium, abdominal viscera, skin/muscles) of developing rainbow trout. Additionally, we investigated mRNA levels of phase I (cyp1a, cyp3a) and phase II (gstp, putative ugt1, putative ugt2) biotransformation enzymes. The study covered the developmental period from the eleuthero-embryo stage to the first-feeding larval stage (1-20days post-hatch, dph). At 1dph, transcripts of abcc2, abcc4, abcg2, cyp3a, gstp, putative mate1, and putative oatp2 occurred primarily in the yolk sac epithelium, whereas at later stages expression of these genes was predominantly observed in the abdominal viscera. The functional activity of ABC transporters in fish early life stages was assessed by rhodamine B accumulation assays. Finally, we investigated the potential impact of xenobiotics (clotrimazole, clofibric acid) on the ABC and biotransformation systems of trout early life stages. While clofibric acid had no effect, clotrimazole lead to an increased rhodamine B accumulation. The results provide evidence that the transition from the eleuthero-embryo to the larval stage is accompanied by a major alteration in tissue expression of ABC transporters.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Access to water and sanitation infrastructures for primary schoolchildren in the south-central part of Côte d’Ivoire(MDPI, 23.08.2021) Kouame, Parfait; Galli, Anais; Peter, Maryna; Loss, Georg; Wassa, Diriassouba; Bonfoh, Bassirou; Utzinger, Jürg; Winkler, MirkoIn rural settings of Côte d’Ivoire, access to water, sanitation, and hygiene (WASH) at schools is often lacking. The purpose of this study was to assess the availability, quality, and use of WASH infrastructure in schools in the south-central part of Côte d’Ivoire, and to determine the hygiene practices of schoolchildren. A cross-sectional study was conducted in 20 primary schools with (n = 10) or without (n = 10) direct access to drinking water. The survey was comprised of a questionnaire directed at schoolchildren aged 8–17 years, an assessment of the WASH infrastructure, and the testing of drinking water samples for Escherichia coli and total coliforms. Overall, 771 schoolchildren were enrolled in the study. One out of four children (24.9%) reported that they used available toilets. Among those children not using toilets, more than half (57.5%) reported that they practised open defecation. Drinking water infrastructure was limited in most schools because of poor storage tanks, the low flow of water, or broken wells. All drinking water samples (n = 18) tested positive for total coliforms and 15 (83.3%) tested positive for E. coli. The lack of WASH infrastructures in primary schools in the south-central part of Côte d’Ivoire, in combination with poor hygiene practices, might govern disease transmission and absenteeism at school, especially among females.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Activity of binary mixtures of drospirenone with progesterone and 17?-ethinylestradiol in vitro and in vivo(Elsevier, 22.02.2016) Rossier, Nadine Madeleine; Chew, Geraldine; Zhang, Kun; Riva, Francesco; Fent, KarlDespite potential exposure of aquatic organisms to mixtures of steroid hormones, very little is known on their joint activity in fish. Drospirenone (DRS) is a new synthetic progestin used in contraceptive pills in combination with 17α-ethinylestradiol (EE2). Here we systematically analyzed effects of DRS in binary mixtures with progesterone (P4) and EE2. First, we determined the in vitro activity of single compounds in recombinant yeast assays that express the human progesterone, androgen, or estrogen receptor, followed by determination of mixture activities of DRS and P4, DRS and EE2, as well as medroxyprogesterone acetate (MPA) and dydrogesterone (DDG). Mixtures of DRS and P4, as well as of DRS and EE2 showed additive progestogenic and androgenic activities. However, DDG and MPA showed non-additive progestogenic and androgenic activities. We then analyzed the in vivo activity of single compounds and mixtures of DRS and P4, as well as DRS and EE2, by assessing transcriptional changes of up to 14 selected target genes in zebrafish embryos at 48h post fertilization (hpf), and in eleuthero-embryos at 96hpf and 144hpf. DRS, P4, and EE2 led to significant transcriptional alteration of genes, including those encoding hormone receptors (pgr, esr1), a steroidogenic enzyme (hsd17b3), and estrogenic markers (vtg1, cyp19b), in particular at 144 hpf. In general, DRS showed stronger transcriptional changes than P4. In mixtures of DRS and P4, they were mainly non-additive (antagonistic interaction). In mixtures of DRS and EE2, transcriptional responses of esr1, vtg1 and cyp19b were dominated by EE2, suggesting an antagonistic interaction or independent action. Equi-effective mixtures of DRS and EE2, based on progesterone receptor transcripts, showed antagonistic interactions. Our data suggest that interactions in mixtures assessed in vitro in recombinant yeast cannot be translated to the in vivo situation. The receptor-based responses did not correspond well to the transcriptional responses in embryos which are much more complex due to the interplay between hormonal pathways, receptor crosstalk, and hormonal feedback loops.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Advantages of a Life Cycle Impact Assessment at an early stage of development of Printed Flexible Organic Photovoltaic(2015) Hengevoss, Dirk; Baumgartner, Corinne; Hugi, Christoph06 - PräsentationPublikation Amorphous metal-organic frameworks loaded on BiVO4 photoanodes with unique internal metal-like structure for promoting photoelectrochemical water splitting(Elsevier, 09/2024) Bai, Weihao; Li, Hao; Peng, Gang; Wang, Jinnan; Li, Aimin; Corvini, PhilippeAlthough ferrocene (Fc) based Metal-Organic Frameworks (MOFs) can act as oxygen evolution co-catalysts (OECs) for improvement of catalytic reactivity, the poor conductivity and lack of highly active metal sites limit its further application in photoelectrochemical (PEC) water splitting. Herein, the amorphous NiFc-MOF was grafted on BiVO4 photoanode (BiVO4@aNiFc-MOFs) for efficient PEC water splitting. This novel BiVO4@aNiFc-MOFs exhibits high current density of 4.34 mA cm−2 at 1.23 VRHE and relative low onset potential of 0.223 VRHE. The subsequent characterizations demonstrate that Ni species with metal-like state in bulk of aNiFc-MOFs form strong metal-support interaction with BiVO4, thereby promoting the interfacial charge transfer. Moreover, the surface of aNiFc-MOFs is short-range ordered with abundant coordinatively unsaturated Ni sites, creating a more favorable pathway for oxygen evolution reaction from thermodynamics. This work provides a simple method to design photoanodes with efficient OECs of amorphous MOFs for feasible PEC water splitting application.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin(Royal Society of Chemistry, 04/2018) Zhao, Jingming; Bachmann, Daniel G.; Lenz, Markus; Gillingham, Dennis G.; Ward, Thomas R.We report on artificial metalloenzymes that incorporate a biotinylated dirhodium core embedded within engineered streptavidin (Sav hereafter) variants. The resulting biohybrid catalyzes the carbene insertion in C–H bonds and olefins. Chemical- and genetic optimization allows to modulate the catalytic activity of the artificial metalloenzymes that are shown to be active in the periplasm of E. coli (up to 20 turnovers).01A - Beitrag in wissenschaftlicher ZeitschriftPublikation An efficient monitoring concept with control charts for on-line sensors(IWA Publishing, 2002) Thomann, Michael; Rieger, Leiv; Frommhold, Sabine; Siegrist, Hansruedi; Gujer, WilliA monitoring concept for on-line sensors will be discussed which helps the WWTP staff to detect drift-, shift- and outlier effects as well as unsatisfactory calibration curves. The approach is based on the analysis of comparative measurements between the sensor and a reference method. It combines statistical analysis such as control charts and regression analysis with decision support rules. The combination of two different detection levels in the selected Shewhart control charts with additional criteria allows one to detect ‘out-of-control’ situations early with an optimized measurement effort. Beside the statistical analysis the concept supports the operator with a graphical analysis to monitor the accuracy of on-line measurements efficiently. The widely applicable monitoring concept will be illustrated with examples for an ion-sensitive NH4+- and a MLSS-sensor.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Anaerobic digestion of biowaste in Indian municipalities. Effects on energy, fertilizers, water and the local environment(Elsevier, 07/2021) Gross, Thomas; Breitenmoser, Lena; Hugi, Christoph; Wintgens, ThomasAnaerobic digestion (AD) of biowaste seems promising to provide renewable energy (biogas) and organic fertilizers (digestate) and mitigate environmental pollution in India. Intersectoral analyses of biowaste management in municipalities are needed to reveal benefits and trade-offs of AD at the implementation-level. Therefore, we applied material flow analyses (MFAs) to quantify effects of potential AD treatment of biowaste on energy and fertilizer supply, water consumption and environmental pollution in two villages, two towns and two cities in Maharashtra. Results show that in villages AD of available manure and crop residues can cover over half of the energy consumption for cooking (EC) and reduce firewood dependency. In towns and cities, AD of municipal biowaste is more relevant for organic fertilizer supply and pollution control because digestate can provide up to several times the nutrient requirements for crop production, but can harm ecosystems when discharged to the environment. Hence, in addition to energy from municipal biowaste - which can supply 4-6% of EC - digestate valorisation seems vital but requires appropriate post-treatment, quality control and trust building with farmers. To minimize trade-offs, water-saving options should be considered because 2-20% of current groundwater abstraction in municipalities is required to treat all available biowaste with 'wet' AD systems compared to <3% with 'dry' AD systems. We conclude that biowaste management with AD requires contextualized solutions in the setting of energy, fertilizers and water at the implementation-level to conceive valorization strategies for all AD products, reduce environmental pollution and minimize trade-offs with water resources.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Anaerobic digestion of biowastes in India: Opportunities, challenges and research needs(Elsevier, 15.04.2019) Breitenmoser, Lena; Gross, Thomas; Huesch, Ragini; Rau, Julius; Hugi, Christoph; Wintgens, ThomasThe quest for improved living conditions in rapidly growing Indian communities puts pressure on natural resources and produces emissions which harm the environment, society and the economy. Current municipal solid waste (MSW) practices are an important example, as most waste remains untreated and is often deposited on unsafe dumpsites or burned on open fires. Anaerobic digestion (AD) is an option to treat the large biodegradable fraction ('biowaste'). In rural parts of India, the technology to supply energy from biogas has been promoted for 30 years. Biowaste treatment in urban MSW management and organic fertilizer ('digestate') production for agriculture via AD have more recently gained attention but with limited success so far. Recent environmental policies in waste, energy, agricultural and other sectors have, however, set important cornerstones for a broader diffusion in the coming years. On the basis of peer-reviewed literature and governmental reports, we identify barriers and enabling factors along the AD chain (biowaste to technology to product utilization), and analyse relevant boundary conditions for the new multi-sector policies. We show that AD implementation has repeatedly failed due to unrealistic assumptions on biowaste quantity and quality, underestimation of the complex biowaste supply chain, unsuitable AD designs and overestimation of economic returns from biogas and digestate. Local knowledge and capacities for planning and process control are lacking in many places and resources required for operation and maintenance in the long run have often been ignored. We found that the multi-facetted value propositions of AD - including biowaste treatment, energy and fertilizer products - have only been partially tapped due to the exclusive focus on biogas. The new sector policies provide important enabling factors for change. Decentralized AD plants operating on a few tons biowaste per day from reliable and manageable sources (e.g. fruit and vegetable markets) could be a more promising step forward than large-scale investments which rely on large biowaste volumes from various sources. The parallel development of biowaste management, planning tools for municipalities, standardized digestate monitoring protocols and studies on simple, low-cost optimization measures for methane recovery from a wide range of biowastes and innovative high-solid AD digester designs will be prerequisites for the long-term future of AD projects.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Anaerobic Membrane Bioreactor (AnMBR) for the Treatment of Cheese Whey for the Potential Recovery of Water and Energy(Springer, 10/2018) Ribera-Pi, Judit; Badia-Fabregat, Marina; Calderer, Montse; Polášková, Martina; Svojitka, Jan; Rovira, Miquel; Jubany, Irene; Martínez-Lladó, XavierA single-stage Anaerobic Membrane Bioreactor (AnMBR) for the treatment of cheese whey and its co-digestion with cattle slurry was investigated with the aim of potentially recovering water and energy from the wastewater. A 9 L reactor coupled to an ultrafiltration flat sheet membrane module in an external configuration was employed. This configuration enabled the proper separation of solids from permeate. Cheese whey was stored at room temperature and its chemical oxygen demand (COD) varied between 51 and 80 g/L. The reactor was operated at an average hydraulic retention time (HRT) of 15 days and at an organic loading rate (OLR) of 1.2–8.4 kg COD/(m3·day). During operation a COD removal average of 91% ± 7% was achieved. The biogas production ranged from 0.2 to 0.9 m3 biogas/kg COD removed and its methane content was 51–73%. From these results, a potential energy recovery of 2.4 kWh/kg COD removed was calculated. Microbial community analysis showed that bacteria belonging to the orders Bacteroidales and Clostridiales became the most prevalent. The bioreactor was dominated by acetotrophic methanogenesis. The co-digestion of cheese whey with cow manure (3:1) did not decrease NaOH consumption for pH control. Water reuse for cleaning purposes is possible if permeate pH is maintained at 6. Prior to the scaling-up of the system, a pilot scale test would be necessary to optimise membrane performance. The use of AnMBR technology at a real scale would be appropriate since it is a compact technology which permits both energy and potential water recovery after permeate post-treatment, thus constituting a further step towards the establishment of a broader a circular economy approach.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Analysis of bioavailability and induction of glutathione peroxidase by dietary nanoelemental, organic and inorganic selenium(MDPI, 15.03.2021) Lenz, Markus; Ringuet, Mitchell; Hunne, Billie; Bravo, David; Furness, JohnDietary organic selenium (Se) is commonly utilized to increase formation of selenoproteins, including the major antioxidant protein, glutathione peroxidase (GPx). Inorganic Se salts, such as sodium selenite, are also incorporated into selenoproteins, and there is evidence that nanoelemental Se added to the diet may also be effective. We conducted two trials, the first investigated inorganic Se (selenite), organic Se (L-selenomethionine) and nanoelemental Se, in conventional mice. Their bioavailability and effectiveness to increase GPx activity were examined. The second trial focused on determining the mechanism by which dietary Se is incorporated into tissue, utilising both conventional and germ-free (GF) mice. Mice were fed a diet with minimal Se, 0.018 parts per million (ppm), and diets with Se supplementation, to achieve 0.07, 0.15, 0.3 and 1.7 ppm Se, for 5 weeks (first trial). Mass spectrometry, Western blotting and enzymatic assays were used to investigate bioavailability, protein levels and GPx activity in fresh frozen tissue (liver, ileum, plasma, muscle and feces) from the Se fed animals. Inorganic, organic and nanoelemental Se were all effectively incorporated into tissues. The high Se diet (1.7 ppm) resulted in the highest Se levels in all tissues and plasma, independent of the Se source. Interestingly, despite being ~11 to ~25 times less concentrated than the high Se, the lower Se diets (0.07; 0.15) resulted in comparably high Se levels in liver, ileum and plasma for all Se sources. GPx protein levels and enzyme activity were significantly increased by each diet, relative to control. We hypothesised that bacteria may be a vector for the conversion of nanoelemental Se, perhaps in exchange for S in sulphate metabolising bacteria. We therefore investigated Se incorporation from low sulphate diets and in GF mice. All forms of selenium were bioavailable and similarly significantly increased the antioxidant capability of GPx in the intestine and liver of GF mice and mice with sulphate free diets. Se from nanoelemental Se resulted in similar tissue levels to inorganic and organic sources in germ free mice. Thus, endogenous mechanisms, not dependent on bacteria, reduce nanoelemental Se to the metabolite selenide that is then converted to selenophosphate, synthesised to selenocysteine, and incorporated into selenoproteins. In particular, the similar efficacy of nanoelemental Se in comparison to organic Se in both trials is important in the view of the currently limited cheap sources of Se.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors(Springer, 12.07.2023) Suleiman, Marcel; Demaria, Francesca; Zimmardi, Cristina; Kolvenbach, Boris; Corvini, PhilippeAbstract Pharmaceuticals are of concern to our planet and health as they can accumulate in the environment. The impact of these biologically active compounds on ecosystems is hard to predict, and information on their biodegradation is necessary to establish sound risk assessment. Microbial communities are promising candidates for the biodegradation of pharmaceuticals such as ibuprofen, but little is known yet about their degradation capacity of multiple micropollutants at higher concentrations (100 mg/L). In this work, microbial communities were cultivated in lab-scale membrane bioreactors (MBRs) exposed to increasing concentrations of a mixture of six micropollutants (ibuprofen, diclofenac, enalapril, caffeine, atenolol, paracetamol). Key players of biodegradation were identified using a combinatorial approach of 16S rRNA sequencing and analytics. Microbial community structure changed with increasing pharmaceutical intake (from 1 to 100 mg/L) and reached a steady-state during incubation for 7 weeks on 100 mg/L. HPLC analysis revealed a fluctuating but significant degradation (30–100%) of five pollutants (caffeine, paracetamol, ibuprofen, atenolol, enalapril) by an established and stable microbial community mainly composed of Achromobacter, Cupriavidus, Pseudomonas and Leucobacter. By using the microbial community from MBR1 as inoculum for further batch culture experiments on single micropollutants (400 mg/L substrate, respectively), different active microbial consortia were obtained for each single micropollutant. Microbial genera potentially responsible for degradation of the respective micropollutant were identified, i.e. Pseudomonas sp. and Sphingobacterium sp. for ibuprofen, caffeine and paracetamol, Sphingomonas sp. for atenolol and Klebsiella sp. for enalapril. Our study demonstrates the feasibility of cultivating stable microbial communities capable of degrading simultaneously a mixture of highly concentrated pharmaceuticals in lab-scale MBRs and the identification of microbial genera potentially responsible for the degradation of specific pollutants. Key points • Multiple pharmaceuticals were removed by stable microbial communities. • Microbial key players of five main pharmaceuticals were identified.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio)(MDPI, 14.07.2016) Faltermann, Susanne; Hutter, Simon; Christen, Verena; Hettich, Timm; Fent, KarlIntensive growth of cyanobacteria in freshwater promoted by eutrophication can lead to release of toxic secondary metabolites that may harm aquatic organisms and humans. The serine protease inhibitor aeruginosin 828A was isolated from a microcystin-deficient Planktothrix strain. We assessed potential molecular effects of aeruginosin 828A in comparison to another cyanobacterial serine protease inhibitor, cyanopeptolin 1020, in human hepatoma cell line Huh7, in zebrafish embryos and liver organ cultures. Aeruginosin 828A and cyanopeptolin 1020 promoted anti-inflammatory activity, as indicated by transcriptional down-regulation of interleukin 8 and tumor necrosis factor α in stimulated cells at concentrations of 50 and 100 µmol·L−1 aeruginosin 828A, and 100 µmol·L−1 cyanopeptolin 1020. Aeruginosin 828A induced the expression of CYP1A in Huh7 cells but did not affect enzyme activity. Furthermore, hatched zebrafish embryos and zebrafish liver organ cultures were exposed to aeruginosin 828A. The transcriptional responses were compared to those of cyanopeptolin 1020 and microcystin-LR. Aeruginosin 828A had only minimal effects on endoplasmic reticulum stress. In comparison to cyanopeptolin 1020 our data indicate that transcriptional effects of aeruginosin 828A in zebrafish are very minor. The data further demonstrate that pathways that are influenced by microcystin-LR are not affected by aeruginosin 828A.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Antimony retention and release from drained and waterlogged shooting range soil under field conditions(Elsevier, 09/2015) Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, Rene; Conesa, Hector; Keller, Martin; Studer, Björn; Schulin, RainerMany soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L−1 in summer and <40 μg L−1 in winter, which closely correlated with fluctuations in dissolved organic carbon (DOC) concentrations. With the development of anaerobic conditions upon waterlogging, Sb in leachate decreased to 2–5 μg L−1 Sb and remained stable at this level. Antimony speciation measurements in soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Are degrading OPV materials still sustainable?(2015) Zimmermann, Yannick; Brun, Nadja; Hengevoss, Dirk; Corvini, Philippe; Fent, Karl; Hugi, Christoph; Lenz, Markus06 - PräsentationPublikation Assessing microbial water quality. Users' perceptions and system functionality following a combined water safety intervention in rural Nepal(Frontiers, 15.02.2022) Bänziger, Carola; Schertenleib, Ariane; Kunwar, Bal Mukunda; Bhatta, Madan; Marks, SaraRisk-based water safety interventions are one approach to improve drinking water quality and consequently reduce the number of people consuming faecally contaminated water. Despite broad acceptance of water safety planning approaches globally, there is a lack of evidence of their effectiveness for community-managed piped water supplies in rural areas of developing countries. Our research, in the form of a cluster-based controlled pre-post intervention analysis, investigated the impact of a combined water safety intervention on outcomes of microbial water quality, users' perceptions and piped system functionality in rural Nepal. The study enrolled 21 treatment systems and 12 control systems across five districts of the Karnali and Sudurpaschim provinces. Treatment group interventions included field laboratories for microbial analysis, regular monitoring of water quality including sanitary inspections, targeted treatment and infrastructure improvements, household hygiene and water filter promotion, and community training.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis(MDPI, 20.07.2022) Chen, Tianyu; Wu, Yan; Wang, Jinnan; Corvini, PhilippeBy using compound-specific isotope analysis (CSIA) in combination with high-throughput sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared with the apparent removal rate. Both an increase in the influent concentration and the addition of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial community responsible for the biodegradation of BTEX increased with the influent concentration. However, the dominant bacterial community did not change, and its relative abundance was restored after the influent concentration decreased. On the contrary, the addition of TCE significantly changed the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent concentration, although these two stress conditions showed a similar degree of influence on the apparent removal rate of benzene and toluene. The present work not only provides a new method for accurately evaluating the biodegradation performance and microbial community in a bio-PRB, but also expands the application of compound-specific isotope analysis in the biological treatment of wastewater.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Assessment of innovative wastewater technologies in India(Hochschule für Life Sciences FHNW, 2024) Rohrer, Karina; Hugi, Christoph; Pavitra Ganga11 - Studentische ArbeitPublikation Assessment of water, sanitation, and hygiene services in district health care facilities in rural area of Mekong Delta, Vietnam(Springer, 18.10.2022) Hoang, Thi-Khanh-Dieu; Binh, Quach-An; Bui, Xuan-Thanh; Le, Thi-Hieu; Dang, Bao-Trong; Nguyen, Hong-Hai; Ngo, Thi-Tra-My; Kohler, Petra; Makohliso, Solomzi; Peter, Maryna; Raab, Martin; Vanobberghen, Alexandre; Hayter, Arabella; Schönenberger, KlausAccess to sufficient water, sanitation, and hygiene (WASH) services is a crucial requirement for patients during therapy and general well-being in the hospital. However, in low- and middle-income countries, these services are often inadequate, resulting in increased morbidity and mortality of patients. This study aimed at assessing the current situation of WASH services in six District Health Care Facilities (DHCFs) in rural areas of the Mekong Delta provinces, Vietnam. The results showed that these services were available with inappropriate quality, which did not compromise the stakeholders’ needs. The revealed WASH infrastructures have raised concerns about the prolonged hospital stays for patients and push nosocomial infections to a high level. The safety of the water supply was doubted as the high E. coli (> 60%) and total coliform incidence (86%) was observed with very low residual chlorine concentration (< 0.1 mg/L) in water quality assessment. Moreover, water supply contained a high concentration of iron (up to 15.55 mg/L) in groundwater in one DHCF. Technical assessment tool analysis proved that the improper management and lack of knowledge by human resources were the primary roots of the observed status WASH services. Improvement of the perceptions of WASH should be done for the hospital staff with collaboration and support from the government to prevent incidents in the future.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Au@CoS-BiVO4 {010} constructed for visible-light-assisted peroxymonosulfate activation(MDPI, 22.11.2021) Ji, Yekun; Zhou, Ye; Wang, Jinnan; Li, Aimin; Bian, Weilin; Corvini, PhilippeA visible-light-Fenton-like reaction system was constructed for the selective conversion of peroxymonosulfate to sulfate radical. Au@CoS, when doped on monoclinic BiVO4 {010} facets, promoted spatial charge separation due to the different energy band between the m-BiVO4 {010} and {110} facets. The visible-light response of m-BiVO4 was enhanced, which was attributed to the SPR effect of Au. And the photogenerated electrons were transferred from the m-BiVO4 {010} facet to Au via a Schottky junction. Owing to higher work function, CoS was able to capture these photoelectrons with acceleration of the Co(Ⅱ)/Co(Ⅲ) redox, enhancing peroxymonosulfate conversion to sulfate radical (Co2+ + HSO5−→ Co3+ + •SO4− + OH−). On the other hand, holes accumulated on m-BiVO4 {110} facets also contributed to organics oxidation. Thus, more than 95% of RhB was degraded within 40 min, and, even after five cycles, over 80% of RhB could be removed. The radical trapping experiments and EPR confirmed that both the sulfate radical and photogenerated hole were the main species for organics degradation. UV-vis DRS, photoluminescence (PL) and photoelectrochemical analyses also confirmed the enhancement of the visible-light response and charge separation. In a pilot scale experiment (PMS = 3 mM, initial TOC = 151 mg/L, reaction time = 4 h), CoS-Au-BiVO4 loaded on glass fiber showed a high mineralization rate (>60%) of practical wastewater.01A - Beitrag in wissenschaftlicher Zeitschrift