Corvini, Philippe

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Corvini
Vorname
Philippe
Name
Corvini, Philippe

Suchergebnisse

Gerade angezeigt 1 - 10 von 55
  • Publikation
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors
    (Springer, 12.07.2023) Corvini, Philippe [in: Applied Microbiology and Biotechnology]
    Abstract Pharmaceuticals are of concern to our planet and health as they can accumulate in the environment. The impact of these biologically active compounds on ecosystems is hard to predict, and information on their biodegradation is necessary to establish sound risk assessment. Microbial communities are promising candidates for the biodegradation of pharmaceuticals such as ibuprofen, but little is known yet about their degradation capacity of multiple micropollutants at higher concentrations (100 mg/L). In this work, microbial communities were cultivated in lab-scale membrane bioreactors (MBRs) exposed to increasing concentrations of a mixture of six micropollutants (ibuprofen, diclofenac, enalapril, caffeine, atenolol, paracetamol). Key players of biodegradation were identified using a combinatorial approach of 16S rRNA sequencing and analytics. Microbial community structure changed with increasing pharmaceutical intake (from 1 to 100 mg/L) and reached a steady-state during incubation for 7 weeks on 100 mg/L. HPLC analysis revealed a fluctuating but significant degradation (30–100%) of five pollutants (caffeine, paracetamol, ibuprofen, atenolol, enalapril) by an established and stable microbial community mainly composed of Achromobacter, Cupriavidus, Pseudomonas and Leucobacter. By using the microbial community from MBR1 as inoculum for further batch culture experiments on single micropollutants (400 mg/L substrate, respectively), different active microbial consortia were obtained for each single micropollutant. Microbial genera potentially responsible for degradation of the respective micropollutant were identified, i.e. Pseudomonas sp. and Sphingobacterium sp. for ibuprofen, caffeine and paracetamol, Sphingomonas sp. for atenolol and Klebsiella sp. for enalapril. Our study demonstrates the feasibility of cultivating stable microbial communities capable of degrading simultaneously a mixture of highly concentrated pharmaceuticals in lab-scale MBRs and the identification of microbial genera potentially responsible for the degradation of specific pollutants. Key points • Multiple pharmaceuticals were removed by stable microbial communities. • Microbial key players of five main pharmaceuticals were identified.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Direct ammonium oxidation to nitrogen gas (Dirammox) in Alcaligenes strain HO-1: the electrode role
    (Elsevier, 07/2023) Corvini, Philippe [in: Environmental Science and Ecotechnology]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Enzymes for consumer products to achieve climate neutrality
    (Oxford University Press, 15.03.2023) Corvini, Philippe [in: Oxford Open Climate Change]
    Abstract Today, the chemosphere’s and biosphere’s compositions of the planet are changing faster than experienced during the past thousand years. CO2 emissions from fossil fuel combustion are rising dramatically, including those from processing, manufacturing and consuming everyday products; this rate of greenhouse gas emission (36.2 gigatons accumulated in 2022) is raising global temperatures and destabilizing the climate, which is one of the most influential forces on our planet. As our world warms up, our climate will enter a period of constant turbulence, affecting more than 85% of our ecosystems, including the delicate web of life on these systems, and impacting socioeconomic networks. How do we deal with the green transition to minimize climate change and its impacts while we are facing these new realities? One of the solutions is to use renewable natural resources. Indeed, nature itself, through the working parts of its living systems, the enzymes, can significantly contribute to achieve climate neutrality and good ecological/biodiversity status. Annually they can help decreasing CO2 emissions by 1–2.5 billion-tons, carbon demand by about 200 million-tons, and chemical demand by about 90 million-tons. With current climate change goals, we review the consequences of climate change at multiple scales and how enzymes can counteract or mitigate them. We then focus on how they mobilize sustainable and greener innovations in consumer products that have a high contribution to global carbon emissions. Finally, key innovations and challenges to be solved at the enzyme and product levels are discussed.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Enzymes for consumer products to achieve climate neutrality
    (Oxford University Press, 15.03.2023) Corvini, Philippe [in: Oxford Open Climate Change]
    Today, the chemosphere’s and biosphere’s compositions of the planet are changing faster than experienced during the past thousand years. CO2 emissions from fossil fuel combustion are rising dramatically, including those from processing, manufacturing and consuming everyday products; this rate of greenhouse gas emission (36.2 gigatons accumulated in 2022) is raising global temperatures and destabilizing the climate, which is one of the most influential forces on our planet. As our world warms up, our climate will enter a period of constant turbulence, affecting more than 85% of our ecosystems, including the delicate web of life on these systems, and impacting socioeconomic networks. How do we deal with the green transition to minimize climate change and its impacts while we are facing these new realities? One of the solutions is to use renewable natural resources. Indeed, nature itself, through the working parts of its living systems, the enzymes, can significantly contribute to achieve climate neutrality and good ecological/biodiversity status. Annually they can help decreasing CO2 emissions by 1–2.5 billion-tons, carbon demand by about 200 million-tons, and chemical demand by about 90 million-tons. With current climate change goals, we review the consequences of climate change at multiple scales and how enzymes can counteract or mitigate them. We then focus on how they mobilize sustainable and greener innovations in consumer products that have a high contribution to global carbon emissions. Finally, key innovations and challenges to be solved at the enzyme and product levels are discussed.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis
    (MDPI, 20.07.2022) Corvini, Philippe [in: International Journal of Environmental Research and Public Health]
    By using compound-specific isotope analysis (CSIA) in combination with high-throughput sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared with the apparent removal rate. Both an increase in the influent concentration and the addition of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial community responsible for the biodegradation of BTEX increased with the influent concentration. However, the dominant bacterial community did not change, and its relative abundance was restored after the influent concentration decreased. On the contrary, the addition of TCE significantly changed the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent concentration, although these two stress conditions showed a similar degree of influence on the apparent removal rate of benzene and toluene. The present work not only provides a new method for accurately evaluating the biodegradation performance and microbial community in a bio-PRB, but also expands the application of compound-specific isotope analysis in the biological treatment of wastewater.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Hierarchical nano-vesicles with bimetal-encapsulated for peroxymonosulfate activation. Singlet oxygen-dominated oxidation process
    (Elsevier, 01.04.2022) Corvini, Philippe [in: Chemical Engineering Journal]
    Hierarchical nano-vesicles with bimetal-encapsulated (FeCu1.5O3@NV) was designed for peroxymonosulfate (PMS) activation with the 1O2-dominated oxidation process. Different from previous core–shell metal-loaded catalysts, FeCu1.5O3 was encapsulated in hollow zeolite spheres, and these zeolite sphere units assembled to construct hierarchical nano-vesicles. Owning to mesoporous shell and abundant interior cavity, FeCu1.5O3@NV could enrich reactants in cavity for enhancing the contact with active sites. The flexible surface of bimetal oxides strengthened the affinity with surface adsorbates and substrates, accelerating the electron transfer between reactants. DFT calculation indicated that FeCu1.5O3@NV possessed strong binding affinity for BPA and PMS, facilitating PMS activation and BPA degradation inside of hollow sphere units. Being attributed to the synergistic effect of bimetal redox couples and hierarchical nano-vesicle structure, large amounts of 1O2 could be generated through two pathways for BPA degradation. The first pathway is the reaction between bimetal redox couples and PMS, and the second is the chain reaction of O2•−. Due to bimetal oxides uniformly encapsulated in hierarchical nano-vesicles, FeCu1.5O3@NV possessed high catalytic stability with negligible metal leaching. Even after 5 cycles, BPA removal could still remain 100%.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    BiOBr/ Bi4O5Br2/PDI constructed for visible-light degradation of endocrine disrupting chemicals. Synergistic effects of bi-heterojunction and oxygen evolution
    (Elsevier, 01.04.2022) Corvini, Philippe [in: Chemical Engineering Journal]
    To remove endocrine disrupting chemicals (EDCs), visible-light response photocatalyst BiOBr/Bi4O5Br2/perylene diimide (PDI) with bi-heterojunction was constructed. Under visible-light irradiation, BiOBr/Bi4O5Br2/PDI could degrade 90% Bisphenol A (BPA) within 75 min, while degrade 100% 17α-ethynyl estradiol (EE2) and 17β-estradiol (E2) within 15 min. Radicals quenching experiment and EPR indicated both •O2– and holes were the main substances for EDCs degradation, and the possible degradation pathway of EDCs are proposed based on the LC-MS analysis results. In the composite of BiOBr/Bi4O5Br2/PDI, the matching energy band structure between Bi4O5Br2 and BiOBr facilitated the formation of heterojunction for strengthening the space charge separation. Meanwhile, PDI with strong photosensitivity combined with BiOBr/Bi4O5Br2 not only enhanced visible-light photocatalytic activity but also broadened the light-harvesting range. Owning to the unique one-dimensional conjugated structure and internal electric field effect, PDI could also promote the photo-carriers transfer and separation. With the bi-heterojunction effect, photo-generated electrons were transferred to BiOBr conduction band while holes were accumulated on PDI valence band. Simultaneously, holes could oxidize water with the production of oxygen following being reduced to •O2– by photo-generated electrons. Even under oxygen-poor conditions, the production of •O2– can reach 32.7 × 10-5mol•g−1•h−1, resulting in more than 85% BPA degradation within 75 min.
    01A - Beitrag in wissenschaftlicher Zeitschrift