Pascal, Joris

Loading...
Profile Picture
Email Address
Birth Date
Project
Organizational Units
Job Title
Last Name
Pascal
First Name
Joris
Name
Pascal, Joris

Search results

Now showing 1 - 4 of 4
  • Publication
    Magnetic field interactions of smartwatches and portable electronic devices with CIEDs. Did we open a Pandora’s box?
    (Elsevier, 12/2022) Badertscher, Patrick; Vergne, Céline; Féry, Corentin; Mannhart, Diego; Quirin, Thomas; Osswald, Stefan; Kühne, Michael; Sticherling, Christian; Knecht, Stefan; Pascal, Joris [in: International Journal of Cardiology Heart & Vasculature]
    Magnetic interaction of portable electronic devices (PEDs), such as state-of-the art mobile phones, with cardiovascular implantable electronic devices (CIEDs) has been reported. The aim of the study was to quantify the magnetic fields of latest generation smartwatches and other PEDs and to evaluate and predict their risk of CIED interactions.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publication
    Towards tracking of deep brain stimulation electrodes using an integrated magnetometer
    (MDPI, 10.04.2021) Quirin, Thomas; Féry, Corentin; Vogel, Dorian; Vergne, Céline; Sarracanie, Mathieu; Salameh, Najat; Madec, Morgan; Hemm-Ode, Simone; Hebrard, Luc; Pascal, Joris [in: Sensors]
    This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publication
    Towards tracking of deep brain stimulation electrodes using an integrated magnetometer
    (MDPI, 04/2021) Quirin, Thomas; Féry, Corentin; Vogel, Dorian; Vergne, Céline; Sarracanie, Mathieu; Salameh, Najat; Madec, Morgan; Hemm-Ode, Simone; Hébrard, Luc; Pascal, Joris [in: Sensors]
    This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publication
    Tracking the orientation of deep brain stimulation electrodes using an embedded magnetic sensor
    (2021) Vergne, Céline; Madec, Morgan; Hemm-Ode, Simone; Quirin, Thomas; Vogel, Dorian; Hebrard, Luc; Pascal, Joris [in: 10th International IEEE EMBS Conference on Neural Engineering]
    This paper proposes a three-dimensional (3D) orientation tracking method of a 3D magnetic sensor embedded in a 2.5 mm diameter electrode. Our system aims to be used during intraoperative surgery to detect the orientation of directional leads (D-leads) for deep brain stimulation (DBS).
    06 - Präsentation