Varon, Daniel

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Varon
Vorname
Daniel
Name
Varon, Daniel

Suchergebnisse

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Publikation

Synthetic phosphoethanolamine-modified oligosaccharides reveal the importance of glycan length and substitution in biofilm-inspired assemblies

2022-07-08, Tyrikos-Ergas, Theodore, Gim, Soeun, Huang, Jhih-Yi, Pinzón Martín, Sandra, Varon, Daniel, Seeberger, Peter H., Delbianco, Martina

Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with remarkable mechanical properties. Efforts understanding and tuning the protein component have been extensive, whereas the polysaccharide part remained mostly overlooked. The discovery of phosphoethanolamine (pEtN) modified cellulose in biofilms revealed that polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN cellulose and its mode of interactions with proteins remains elusive. Herein, we report a model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a representative peptide, triggering the formation of fibers in a length dependent manner. We discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the assembly morphology, revealing interesting targets for polysaccharide engineering to develop tunable bio-inspired materials.