Grether, Loris

Loading...
Profile Picture
Email Address
Birth Date
Project
Organizational Units
Job Title
Last Name
Grether
First Name
Loris
Name
Loris Grether

Search results

Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Natural language-based user guidance for knowledge graph exploration: a user study

2021, Witschel, Hans Friedrich, Riesen, Kaspar, Grether, Loris, Cucchiara, Rita, Fred, Ana, Filipe, Joaquim

Large knowledge graphs hold the promise of helping knowledge workers in their tasks by answering simple and complex questions in specialised domains. However, searching and exploring knowledge graphs in current practice still requires knowledge of certain query languages such as SPARQL or Cypher, which many untrained end users do not possess. Approaches for more user-friendly exploration have been proposed and range from natural language querying over visual cues up to query-by-example mechanisms, often enhanced with recommendation mechanisms offering guidance. We observe, however, a lack of user studies indicating which of these approaches lead to a better user experience and optimal exploration outcomes. In this work, we make a step towards closing this gap by conducting a qualitative user study with a system that relies on formulating queries in natural language and providing answers in the form of subgraph visualisations. Our system is able to offer guidance via query recommendations based on a current context. The user study evaluates the impact of this guidance in terms of both efficiency and effectiveness (recall) of user sessions. We find that both aspects are improved, especially since query recommendations provide inspiration, leading to a larger number of insights discovered in roughly the same time.

No Thumbnail Available
Publication

KvGR: A graph-based interface for explorative sequential question answering on heterogeneous information sources

2020, Witschel, Hans Friedrich, Riesen, Kaspar, Grether, Loris, Jose, Joemon M., Yilmaz, Emine, Magalhães, João, Castells, Pablo, Ferro, Nicola, Silva, Mário J., Martins, Flávio

Exploring a knowledge base is often an iterative process: initially vague information needs are refined by interaction. We propose a novel approach for such interaction that supports sequential question answering (SQA) on knowledge graphs. As opposed to previous work, we focus on exploratory settings, which we support with a visual representation of graph structures, helping users to better understand relationships. In addition, our approach keeps track of context – an important challenge in SQA – by allowing users to make their focus explicit via subgraph selection. Our results show that the interaction principle is either understood immediately or picked up very quickly – and that the possibility of exploring the information space iteratively is appreciated.