Raso, Renzo

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Raso
Vorname
Renzo
Name
Renzo Raso

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Publikation
    Template-particle stabilized bicontinuous emulsion yielding controlled assembly of hierarchical high-flux filtration membranes
    (American Chemical Society, 2015) Hess, Samuel C.; Kohll, A. Xavier; Raso, Renzo; Schumacher, Christoph M.; Grass, Robert N.; Stark, Wendelin J. [in: ACS Applied Materials & Interfaces]
    A novel solvent-evaporation-based process that exploits template-particle stabilized bicontinuous emulsions for the formation of previously unreached membrane morphologies is reported in this article. Porous membranes have a wide range of applications spanning from water filtration, pharmaceutical purification, and battery separators to scaffolds for tissue engineering. Different situations require different membrane morphologies including various pore sizes and pore gradients. However, most of the previously reported membrane preparation procedures are restricted to specific morphologies and morphology alterations require an extensive optimization process. The tertiary system presented in this article, which consists of a poly(ether sulfone)/dimethylacetamide (PES/DMAc) solution, glycerol, and ZnO-nanoparticles, allows simple and exact tuning of pore diameters ranging from sub-20 nm, up to 100 nm. At the same time, the pore size gradient is controlled from 0 up to 840%/μm yielding extreme asymmetry. In addition to structural analysis, water flux rates of over 5600 L m–2 h–1 are measured for membranes retaining 45 nm silica beads.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Fibers mechanically similar to sheep wool obtained by wet spinning of gelatin and optional plasticizers
    (Wiley, 2014) Stoessel, Philipp R.; Raso, Renzo; Kaufmann, Tim; Grass, Robert N.; Stark, Wendelin J. [in: Macromolecular Materials and Engineering]
    AbstractGelatin is an exceptional and versatile biopolymer with applications in various industries. As the most abundant structural protein in vertebrates it is available in megaton quantities. On these grounds, it would be a plausible substitute for synthetic polymers. Gelatin processing into fibers seems promising as continuous protein filaments do not have the limitation of natural fibers, i.e., small staple fiber length. Instead of spinning an aqueous gelatin solution, a protein precipitate from a phase‐separated system is used. Robust wet spinning with subsequent fiber drawing allows production of a gelatin filament with similar mechanical properties as sheep wool. Different degrees of fiber drawing and addition of plasticizers enable to tailor the mechanical and thermal fiber properties and demonstrate the versatility of the proposed spinning process.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Magnetic superbasic proton sponges are readily removed and permit direct product isolation
    (American Chemical Society, 2014) Schneider, Elia M.; Raso, Renzo; Hofer, Corinne J.; Zeltner, Martin; Stettler, Robert D.; Hess, Samuel C.; Grass, Robert N.; Stark, Wendelin J. [in: The Journal of Organic Chemistry]
    Workup in organic synthesis can be very time-consuming, particularly when using reagents with both a solubility similar to that of the desired products and a tendency not to crystallize. In this respect, reactions involving organic bases would strongly benefit from a tremendously simplified separation process. Therefore, we synthesized a derivative of the superbasic proton sponge 1,8-bis(dimethylamino)naphthalene (DMAN) and covalently linked it to the strongest currently available nanomagnets based on carbon-coated cobalt metal nanoparticles. The immobilized magnetic superbase reagent was tested in Knoevenagel- and Claisen-Schmidt-type condensations and showed conversions of up to 99%. High yields of up to 97% isolated product could be obtained by simple recrystallization without using column chromatography. Recycling the catalyst was simple and fast with an insignificant decrease in catalytic activity.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Ferromagnetic inks facilitate large scale paper recycling and reduce bleach chemical consumption
    (American Chemical Society, 2013) Zeltner, Martin; Toedtli, Laura M.; Hild, Nora; Fuhrer, Roland; Rossier, Michaël; Gerber, Lukas C.; Raso, Renzo; Grass, Robert N.; Stark, Wendelin J. [in: Langmuir]
    Deinking is a fundamental part of paper recycling. As the global paper consumption rises and exceeds even the annual paper production, recycling of this raw material is of high importance. Magnetic ink based on carbon coated magnetic nanoparticles enables an alternative approach to state of the art paper deinking. Magnetic deinking comprises three steps (preselection, washing, and magnetic separation of fibers). Preseparation of printed from nonprinted scraps of paper is feasible and reduces the paper mass which has to be fed into a deinking process. A consecutive washing process removes surficial magnetic ink that can be collected by application of a permanent magnet. Still, printed parts are subjected to a further continuous magnetic deinking step, where magnetic and nonmagnetic paper fibers can be separated. Magnetic deinking of a model print allows recovery of more than 80% of bright fibers without any harsh chemical treatment and the re-collection of more than 82% of magnetic ink.
    01A - Beitrag in wissenschaftlicher Zeitschrift