Raso, Renzo

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Raso
Vorname
Renzo
Name
Renzo Raso

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Magnetic superbasic proton sponges are readily removed and permit direct product isolation
    (American Chemical Society, 2014) Schneider, Elia M.; Raso, Renzo; Hofer, Corinne J.; Zeltner, Martin; Stettler, Robert D.; Hess, Samuel C.; Grass, Robert N.; Stark, Wendelin J. [in: The Journal of Organic Chemistry]
    Workup in organic synthesis can be very time-consuming, particularly when using reagents with both a solubility similar to that of the desired products and a tendency not to crystallize. In this respect, reactions involving organic bases would strongly benefit from a tremendously simplified separation process. Therefore, we synthesized a derivative of the superbasic proton sponge 1,8-bis(dimethylamino)naphthalene (DMAN) and covalently linked it to the strongest currently available nanomagnets based on carbon-coated cobalt metal nanoparticles. The immobilized magnetic superbase reagent was tested in Knoevenagel- and Claisen-Schmidt-type condensations and showed conversions of up to 99%. High yields of up to 97% isolated product could be obtained by simple recrystallization without using column chromatography. Recycling the catalyst was simple and fast with an insignificant decrease in catalytic activity.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Indoor air purification using activated carbon adsorbers: Regeneration using catalytic combustion of intermediately stored VOC
    (American Chemical Society, 2014) Raso, Renzo; Zeltner, Martin; Stark, Wendelin J. [in: Industrial & Engineering Chemistry Research]
    In this study, we demonstrate a two-step process where activated carbon based air purifier systems can be regenerated in situ and eliminate volatile organic compounds (VOCs) from indoor air in an energy efficient way. A carbon based adsorber was combined in series with a CeO2/TiO2 oxidative catalyst for total oxidation of the previously adsorbed and periodically released volatile organic compounds during regeneration runs. We investigated the adsorption and desorption behavior of five different VOCs (diethyl ether, limonene, linalool, hexanoic acid, triethylamine and n-decane) with thermogravimetric measurements, mass spectrometry and elemental analysis. Cyclic loading and regeneration experiments were carried out with selected VOCs (limonene, linalool and n-decane) for testing regeneration at elevated temperature. We showed that in situ thermal regeneration and subsequent oxidation of released VOC is a sustainable and easy applicable technology for indoor air purification. This two-step approach allows energy saving as the VOCs are eliminated discontinuously (enriching VOCs; periodic catalytic combustion), and is of high environmental and economic interest, as much less maintenance services are required.
    01A - Beitrag in wissenschaftlicher Zeitschrift