Ditzinger, Felix

Loading...
Profile Picture
Email Address
Birth Date
Project
Organizational Units
Job Title
Last Name
Ditzinger
First Name
Felix
Name
Ditzinger, Felix

Search results

Now showing 1 - 2 of 2
  • Publication
    Opportunities for Successful Stabilization of Poor Glass-Forming Drugs: A Stability-Based Comparison of Mesoporous Silica Versus Hot Melt Extrusion Technologies
    (Elsevier, 04.11.2019) Ditzinger, Felix; Price, Daniel J.; Nair, Anita; Becker-Baldus, Johanna; Glaubitz, Clemens; Dressman, Jennifer; Saal, Christoph; Kuentz, Martin [in: Pharmaceutics]
    Amorphous formulation technologies to improve oral absorption of poorly soluble active pharmaceutical ingredients (APIs) have become increasingly prevalent. Currently, polymer-based amorphous formulations manufactured by spray drying, hot melt extrusion (HME), or co-precipitation are most common. However, these technologies have challenges in terms of the successful stabilization of poor glass former compounds in the amorphous form. An alternative approach is mesoporous silica, which stabilizes APIs in non-crystalline form via molecular adsorption inside nano-scale pores. In line with these considerations, two poor glass formers, haloperidol and carbamazepine, were formulated as polymer-based solid dispersion via HME and with mesoporous silica, and their stability was compared under accelerated conditions. Changes were monitored over three months with respect to solid-state form and dissolution. The results were supported by solid-state nuclear magnetic resonance spectroscopy (SS-NMR) and scanning electron microscopy (SEM). It was demonstrated that mesoporous silica was more successful than HME in the stabilization of the selected poor glass formers. While both drugs remained non-crystalline during the study using mesoporous silica, polymer-based HME formulations showed recrystallization after one week. Thus, mesoporous silica represents an attractive technology to extend the formulation toolbox to poorly soluble poor glass formers.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publication
    Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations – a PEARRL review
    (Wiley, 05/2018) Price, Daniel J.; Ditzinger, Felix; Koehl, Niklas; Jankovic, Sandra; Tsakiridou, Georgia; Nair, Anita; Holm, Rene; Kuentz, Martin; Dressman, Jennifer; Saal, Christoph [in: Journal of Pharmacy and Pharmacology]
    Objectives Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial‐and‐error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection. Key findings Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can be guided by molecular rationale. However, more work is required to see widespread application of such an approach for PI selection. Summary Precipitation inhibitors are becoming increasingly important in enabling formulations. Trial‐and‐error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.
    01A - Beitrag in wissenschaftlicher Zeitschrift