Köser, Joachim

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Köser
Vorname
Joachim
Name
Köser, Joachim

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Enhanced formation of nanometric titanium cones by incorporation of titanium, tungsten and/or iron in a helium ion beam
    (Elsevier, 12/2022) Sanchez, Fabien; Steiner, Roland; Latttner, P.; Spicher, J.; Mathys, Daniel; Antunes, Rodrigo; Marcin, Kisiel; Mukkadam, Khaled; Astasov-Fraunhofer, Monika; Kühl, Sebastian; Köser, Joachim; Wagner, Raphael; Marot, Laurent; Meyer, Ernst [in: Surfaces and Interfaces]
    Surface patterning of bio-compatible titanium (Ti) shows a growing interest in the medical field. The engineering of material surfaces can achieve bactericidal properties and osteointegration improvements in order to develop medical implants. Spikes-like surface morphologies have already demonstrated the development of promising bactericidal properties. A barely new method to produce nanometric-sized cones on titanium consists of helium (He) ion irradiation using low energies ( 100 eV) and temperatures comprised between 0.25 T/T 0.5 (with T being the melting temperature of the material). Ti, iron (Fe) and/or tungsten (W) were incorporated in a He beam, and their amounts were quantified using X-ray Photoelectron Spectroscopy (XPS). The He ion energy was varied from 70 and 120 eV, the surface temperatures from 571 to 651 K for fluences approximately equal to 1024 m−2. After irradiation, the surface morphology was characterized using Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB). This study demonstrated the capability for irradiated Ti surfaces to form cones with tunable density, aspect ratio, and heights with the incorporation of Ti, Fe and/or W in a He ion. Additionally, the growth rate of the cones was enhanced by about 30 times in comparison to pure He irradiation as a function of the chosen materials introduced in the He beam.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Rapid prototyping method for 3D printed biomaterial constructs with vascular structures
    (IEEE, 2018) Gullo, Maurizio; Köser, Joachim; Ruckli, Oliver; Eigenmann, Andrej; Hradetzky, David [in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)]
    This paper presents a fabrication method for rapid prototyping of 3D biomaterial constructs with vascular structures. The method relies on poloxamer fugitive ink, which is over casted with a custom-made alginate based model extracellular matrix (ECM). The presented method is simple to implement and compatible with standard cell culture workflows used in biomedical research and pharmaceutical development. We present the material preparation, gelation properties and printing methods in detail. First experiments demonstrate the suitability of the ECM constructs for 3D tissue culture.
    04B - Beitrag Konferenzschrift