
Interactive Use-Case Generation Tool for Functional REST API
Testing

Bachelor Thesis

Windisch, August 2023

Students Jonas Volken
Benjamin Leu

Expert Romano Roth

Supervisors Prof. Martin Kropp & Fabian Affolter

Customer Nejdet Dogru, Testifi GmbH

Project number 23fs_imvs12

Fachhochschule Nordwestschweiz, Hochschule für Technik

Abstract

Software is an integral part of any business, which makes the significance of high-quality soft-
ware in today’s digital age undeniable. However, despite the advancements in software testing,
challenges persist in efficiently planning, generating, and executing test cases, particularly for
REST API-based applications.

This project addresses the issue by developing a sequence generator tool that enables testers to
effortlessly create and execute sequences of requests, streamlining the creation of comprehensive
test scenarios. By simplifying the process of connecting response values to subsequent request
values, the software seeks to maximize test coverage, improve test quality, and enable testers to
focus more on software quality enhancement than the efforts of test construction.

The client for this project is Testifi GmbH, a company dedicated to enhancing software delivery
processes through DevOps integrations and AI-automated quality assurance solutions.

The main focus of the project was to find out if the test quality increased by using the sequence
generator tool due to more edge cases and more complex scenarios being tested compared to
manual API testing, as well as showing if the efficiency improvement can be measured in reduced
amount of time necessary for creation sequences.

To answer these questions and develop an application that offers value for Testifi GmbH, a
literature review was conducted on the subjects of basic user interface design and user experience
concepts for advanced users. Based on the findings, the user interface of the application was
outlined and the software implemented.

During development and with the finished product, multiple sets of user tests were conducted
with users experienced in working with APIs, to improve the design and software during devel-
opment, and to gain insights about the effectiveness of the final product. Those tests showed
that the main goals of the project could be reached by demonstrating a considerable amount
of time saved by using the application, while also outperforming manual testing methods in
efficiency and ease of use. Key features like the linking of response values to subsequent request
values and the suggestion of such links based on Testifi’s Pulse Artificial intelligence (AI) as
well as previously created sequences were well received by testers and customer. The literature
review also proved to be very valuable as users praised the straight forward design, while never
missing any important data.

When Testifi GmbH integrates the end product in their pulse workflow, its ability to create
sequences easily and intuitively as well as the potential of the additional link suggestions created
by the tool to be used in improving the Pulse AI will be indispensable.

iii

Acknowledgements

We would like to express our gratitude to Prof. Martin Kropp for his support throughout this
bachelor’s thesis. His guidance and advice helped us to stay on track and ultimately achieve the
project’s objectives.

Fabian Affolter also played a crucial role in the project by providing guidance and feedback
throughout its duration, as well as tremendous support in all UI/UX aspects during several
workshops and meetings.

From Testifi GmbH, we would also like to thank Nejdet Dogru and Gabor Bakos for their
invaluable inputs, feedback and support, Ece Kilis for her help on the initial high fidelity designs
as well as Orhan Nurkan and Gabor Bakors for their participation in user tests.

Throughout the project we were able to gain valuable experience in multiple new fields while
reinforcing skills we acquired during our studies.

iv CONTENTS

Contents

1 Introduction 1

1.1 Client . 1
1.2 Inital Position . 1
1.3 Problem Statement . 1
1.4 Goals . 1
1.5 Report Structure . 2

2 Foundations and Literature Review 3

2.1 UI Design Principles . 3
2.2 Open API Standard . 7

3 Key Concepts and Terminology 11

4 User Interface Design 12

4.1 Overview Screen . 12
4.2 Editor . 12
4.3 Low-Fidelity Design . 14
4.4 High-Fidelity design . 16

5 User Experience 18

5.1 User Guidance . 18
5.2 Autosave . 21
5.3 Keyboard Interaction . 22
5.4 Usage Of Node-Link Diagrams And Matrixes . 23
5.5 User Flow . 23

6 Application Design 28

6.1 Frontend . 28
6.2 Backend . 30
6.3 REST API . 31
6.4 Data Design . 32
6.5 Data flow . 34

7 Implementation 37

7.1 Deployment . 37
7.2 Frontend . 38
7.3 Backend . 49

CONTENTS v

8 User Tests 52

8.1 Initial User Tests . 52

8.2 Final User Tests . 53

9 Discussion 57

9.1 Results summary . 57

9.2 Interpretation . 58

9.3 Research Questions . 59

9.4 Limitations . 59

9.5 Outlook . 60

10 Conclusion 62

Bibliography 63

Glossary 65

Acronyms 67

List of Figures 68

List of Tables 69

List of Listings 69

Declaration of Academic Honesty 70

A Initial Assignment 71

B Project Agreement 72

C REST API Documentation 80

1

1 Introduction

1.1 Client

Testifi GmbH is an international company headquartered in Munich, Germany. Their focus
is on optimising software delivery processes through DevOps integrations while providing AI-
automated quality assurance solutions. They provide a highly advanced software tool for fully
integrated automated testing and aim to provide the ability to test and create automated tests.

1.2 Inital Position

Regardless of product, enterprise, or domain, software is an inevitable part of the industrial
operation. The use of quality software, therefore, is one of the most important aspects of
business success in our age. Software testing is an essential quality assurance step used in
software development. Testing gives feedback to developers about the quality and functionality
of their software so they can correct and optimize their product. Furthermore, testing improves
the overall stability of the product and enables the developers to easily add and change features.
The later an issue is found the more work is required to fix it. Testing manually is simply not
sufficient for modern software development that demands speed and continuous development.
Therefore, test automation - tests executed automatically via software tools - is a critical success
factor for modern software delivery, and therefore, for modern business. Since web applications
are everywhere and modern software development methods employ microservices extensively,
test automation for REST APIs is the focus of this project.

1.3 Problem Statement

Planning, generation, and execution of test cases are time-consuming and significantly affected
by human errors. In addition, while a software is evolving, APIs are also updated according to
current needs. Changes in APIs need to be reflected in test cases. When all these processes (cre-
ating requests, entering correct parameters and payload data, creating test data sets, following
all changes, and refactoring test cases, executing and reporting tests) are performed manually,
testers spend most of their time debugging errors and maintaining the tests. They usually end
up having less than necessary number of tests. This results in suboptimal test coverage, as well
as a lack of transparency regarding the quality and quantity of manually performed tests.

Testifi is already able to analyse the endpoints of APIs, infer the producer-consumer relationship
between endpoints, and create a graph. That helps create a sequence of requests to send to the
server to check if the logic behind this sequence is implemented. The creation of sequences by
AI is very limited, as while links between some parameters are found, often not all required
values can be provided by AI. This causes manual execution of multiple requests that represent
a sequence, which is time consuming.

The amount of work required to create and maintain tests could be vastly reduced if the testers
were supported with automation and could use tools to create the tests instead of writing them.
Reducing the effort of writing individual tests or performing them manually would also free up
resources to improve the quality and coverage of the executed tests and therefore contribute to
the quality and speed of future developments.

1.4 Goals

The vision of this project is to minimize the effort of testers used to create and maintain testing
scenarios, so the testers can focus on software quality instead of writing tests.

2 1 INTRODUCTION

This project aims to develop a sequence generator that eases test case creation for REST API-
based applications by enabling the tester to easily create and execute sequences of requests.
These sequences can vary from simple login-logout behavior and complex operations, to cover
all necessary usecases the applications might have. The testers can create connections between
responses and subsequent requests to reuse returned values and generate a request-response-�ow.
With the generation of sequences of requests, testers can check if the endpoints are able to work
in harmony with each other (integration tests) and if all planned functionalities are implemented
(functional tests). At the end of the execution of these tests, the user can see in a report of
all requests were executed successfully. As the software is used, it will gain more information
about the links between requests and responses. The information learned from interactively
created connections can be used to add the missing edges into the graph. Subsequently created
sequences can provide a higher number of prede�ned connections in order to further reduce the
manual input required by testers. Ultimately, Testi� can use the new edges to improve it's AI's
link detection.

While providing all the functionality needed, the tool should also meet user experience goals.
The software provided for the testers should be intuitive and easy to use for users. State of the
art concepts for working with graphs and work�ows will be researched and used if applicable,
while basic user experience concepts as well as concepts concerned with supporting advanced
users will be reviewed as well. The user interface will also be in accordance with Testi�'s design
guidelines to match the other products it will later be implemented with.

Based on the goals, the following research questions are to be answered in this project:

1. Is the test quality increased by using the sequence generator?
ˆ Are more edge cases / special scenarios tested compared to manual testing?
ˆ Can more complex scenarios be tested by using the tool?

2. Does using the sequence generator reduce the amount of work necessary to create test
sequences?

ˆ Is there a measurable improvement compared to creating / executing them manually?
ˆ Does the increasing number of known links reduce the necessary amount of work

further?

1.5 Report Structure

The report begins with a literature review about the user interface and user experience theories
related to the task at hand, that o�ers insights in existing concepts that are used as a foundation
for the further chapters. After introducing the main terminology speci�c to the project, the
report then continues with the user interface design and user experience concepts that are based
on the results of the literature review. Next, the report goes into detail about the application
design of the frontend and backend components, before transitioning into the implementation
part, which goes into detail in how the �nal product was implemented. After reporting on the
methodology and results of the user tests, the report concludes with an extensive discussion of
the project results and a �nal conclusion.

3

2 Foundations and Literature Review

This chapter lays the groundwork for understanding the key principles and concepts that under-
pin e�ective UI design, as well as providing an overview of the most important user experience
concepts for advanced users. It also delves into the exploration of the OpenAPI Speci�cation
(OAS) as a foundational standard for describing Hypertext Transfer Protocol (HTTP) Applica-
tion Programming Interfaces (APIs), essential to our application's development.

2.1 UI Design Principles

2.1.1 Basics

Many of the principles that are used by default in UI design today were introduced when UI
research started shortly after the introduction of graphical user interfaces 40 years ago.

In 1996, when GUIs were often sill rudimentary and a lot of potential to visualize was left
unused, Ben Shneiderman devised the "visual information seeking mantra":

Overview �rst, zoom and �lter, then details-on-demand [1].

He uses this mantra when designing new user interfaces that visualize complex and multi-
dimensional data that then in-turn can form relationships among its items. Today this principle
is still very much applicable when visualising complex data.

To start o� users need an overview that presents them with an high-level view of the available
data. The user can get an idea on what already exists without having to deal with any detail.
This creates a experience where they are encouraged to explore the data and dive deeper. By
zooming and �ltering the items in the overview can be reduced to only items that are relevant
to the user. Finally by selecting an item the user is presented with thedetails on demand.

Still there are many di�erent techniques to create interfaces that hold true to Shneiderman's
mantra. Freitas summarizes di�erent approaches [2] that were established in recent years. These
are about providing an overview an detailed information. While in the �rst approach, overview
and detail is separated, in the second approach, overview and detail are sections of the same
view.

Shneidermann de�nes eight golden rules of interaction design [3, pp. 74, 75]. The rules are
very general and can be applied to almost any user interface. Only the rules that bear the
most importance regarding this project will be discussed here, but the other rules should not
be disregarded at all. His �rst rule is to strive for consistency, which can be subdivided into
many categories of consistencies. It can be terminology used in the application or the consistent
application of layouts fonts and colors.

In the second ruleCater to Universal Usability, Shneidermann describes how a system should
accompany a wide range of users with di�erent backgrounds. Luckily in this application the
target audience is relatively narrow, as the application is to be used by testers and software
engineers. These groups posses a good technical understanding, so the focus can be shifted to
ful�ll their needs.

In the seventh rule called Support internal locus of control it is described how the interface
should feel to the user like they are in control. The user should feel like they are the initiators
of actions and not responding to actions. Especially for advanced or expert users this feeling of
being in charge can be very important.

4 2 FOUNDATIONS AND LITERATURE REVIEW

While user interfaces have evolved substantially since the de�nition of these rules, they still hold
up well, as they are not limited to any sort of format of screen but can be applied universally
from apps on smartphones to business applications.

2.1.2 Reducing work

One important aspect of creating digital experiences is to reduce the work the user has to do.
Users want to have an experience where every interaction with the application brings them a
step closer to the goal they have. Cooper [4, p. 271] dissects these interactions into four types
of work a user has:

ˆ Cognitive work
ˆ Memory work
ˆ Visual work
ˆ physical work

For each interaction the user has with the application these types of work are like a tax the user
pays, referred toexciseby Cooper [4, p. 272].

The goal of any application should be to minimize these excise tasks and focus on goal-directed
tasks that guide the user towards their goal. Where in contrast excise tasks are only done
because they are required in order to perform some other goal-directed task.

2.1.3 Existing Solutions

Having laid out a foundation of principals that are important for a good user experience, it makes
sense to see how existing solutions function and if there are obvious �elds of improvement.

Taking a look at Swagger UI there are a lot of excise tasks as mentioned in section 2.1.2.

The following are some observations of excise tasks a user has to do when using Swagger UI to
test a certain endpoint.

Search
A user is presented with a long list of all available endpoints. This provides some good overview
for users who want to explore what an API has to o�er, but the excise of navigation, more
speci�cally scrolling through the list can be annoying to a user who is looking for a speci�c
endpoint. When applying the visual information seeking mantra described in section 2.1.1, it
becomes obvious that the "zooming and �ltering" part is missing.

Using endpoints
Before even being able to use an endpoint the user is presented with a lot of excise tasks. First
the endpoint has to be selected in the list. Then the user has to con�rm by clicking on a "Try it
out" button, as shown in �g. 2.1, that their intention actually is to use this endpoint. Then the
user can start with the goal-directed task of �lling out the parameter �elds, before �nally being
able to send the request.

Navigation
In the previous example one important detail was left out. When a user wants to try out an
endpoint it often needs some other information like an id. To obtain this information the API
has to be queried �rst.

In Swagger UI's case this again involves the excise task of scrolling to another endpoint which
will deliver the necessary data to input, just to then scroll until the other request is found again
and the data can be input there.

2.1 UI Design Principles 5

Figure 2.1: Screenshot of Swagger UI including "Try it out" button

2.1.4 Graphs and Work�ows

Common ways of visualizing linked or hierarchical data are described by Freitas in the Handbook
of Human Computer Interaction [2, p. 23]. These often include drawing graphs where nodes are
connected by lines, in a node-link diagram. Another visualisation is the use of a matrix, where
each relationship between two nodes can me marked as an entry in the matrix. For only showing
relationships this view can be very helpful even if there are a lot of nodes and connections, but
when some detail about the items should also be displayed the matrix visualisation falls short.

When using a node-link diagram there are some more considerations to be done. As there are
many ways to arrange nodes and links. Freitas mentions di�erent asthetic criteria [2, p. 24] that
can be considered, such as edge crossing, where lines should cross as little as possible.

Endpoint Node-Link Diagram
The connections between endpoints as provided by Pulse can be displayed as a graph with the
endpoints as nodes and links as edges.

Matrix
Research shows, that matrixes have advantages when displaying very dense graphs with many
connections [5]. By not having the issue of edge crossings, the visualisation appears cleaner.
Tasks like �nding a particular node are a lot quicker in the matrix viusalisation [5, p. 22]. One
drawback however is the missing directionality that can be easier to visualize using arrows in a
node-link diagram.

Although there is a lot of research done in the �eld of optimizing graph visualisations, there
seems to be no little to no research about the impact of these visualisations regarding the
additional work a user has to do to process these visualisations as laid out in section 2.1.2.

6 2 FOUNDATIONS AND LITERATURE REVIEW

2.1.5 UI Design For Advanced Users

As the basic principles are set and further research into graphs and work�ows is unnecessary,
some additional concepts to cater advanced users can be discussed.

Learning by doing
Research shows that advanced users in particular are usually more motivated to start working

with an application immediately instead of learning it �rst through tutorials or documenta-
tion. Users should be supported in exploring an application and learning the interface through
trial and error, while being given the possibility to constantly see the result of their work [6,
Chapter 1].

Accelerators
Advanced users are generally spending more time working with a product. As they get to

know an application better, they want to minimize the time needed for their work�ows, which
can be achieved by reducing unnecessary steps and context switching, minimizing unnecessary
repetitive work and introducing accelerators [7].

An accelerator in the UI/UX world describes a feature that speeds up an interaction or process.
It's goal is to provide an alternative method for an action, which is usually faster but possibly
more demanding. Accelerators (or shortcuts) are created to be used by advanced users to com-
plete known tasks quickly and e�ciently. Other users should be able to ignore them completely,
as they should always just be an alternative to the standard way of performing a task.

Common accelerators include:

ˆ Keyboard shortcuts
ˆ Marcos
ˆ Touch gestures

While not all actions require an accelerator, they are best used for features that users tend to
use repeatedly [8].

Important Information
To help users �nd and act upon important information, critical elements have to stand out from
their surroundings. This does not need to be done by adding emphasis to that information (e.g.
by adding a color), but can also be achieved by removing nonessential elements. For example,
removing graphics and visual elements that serve no purpose can make the data left behind
stand out [6, Chapter 8].

Removing visual elements can also help the user understand the application better. By removing
clutter and only displaying things when they are needed, the feature and function overload can
be minimized, without reducing the capability of the application [6, Chapter 6].

Secondary Information
When clutter is removed, some information has to be moved to secondary levels, as it might not
be important for the user at all times but is needed to contextualize or provide a deeper level of
detail. In these cases it is recommended to ease the transition between primary and secondary
information by not switching the context of the application.

Whenever possible, secondary information should be displayed in context with its related pri-
mary information. This can be achieved by displaying the it in the same screen or environment
[6, Chapter 7], instead opening a new context.

2.2 Open API Standard 7

2.2 Open API Standard

As this project heavily relies on OAS de�nitions, the concepts and de�nitions of the standard
have to be understood before delving into the implementation.

The OAS, formerly known as Swagger is a speci�cation for describing HTTP APIs. The speci-
�cation was �rst introduced in 2010 and since evolved to version 3 which was released in 2017
[9].

This literature review will focus on the latest version 3.1 of the speci�cation [10], as there are
signi�cant changes made to the format between version 2 and 3 [11].

A baseline understanding of the OAS is required as the whole application will be based on
handling a wide range of the features and the �exibility that the speci�cation o�ers to developers
when describing their APIs.

2.2.1 Basic Structure

The speci�cation de�nes a single �le as an OpenAPI document. An OpenApi document includes
multiple sections of which only some are required. The base of the document is de�ned as an
OpenAPI Object[10, Chapter 4.8.1]. Documents can also reference external de�nitions in many
cases where for example schemas are described.

Info
Includes information about the API that is described. For example the title of the API is
provided here.

Servers
This section contains the addresses where the HTTP requests can be sent to.

Paths
This section contains all Paths the API is exposing. For each path it is de�ned which HTTP
verbs can be used. Response and request schemas can be de�ned for each Method independently,
as a "GET"-Endpoint might return a list of Resources and a "DELETE" Endpoint might not
return any data as a resource is deleted. Each of these path items is referred to as an operation,
as described in section 2.2.1.

The speci�cation also allows di�erent content formats for requests and responses depending on
the content type used respectively.

Parameters are part of the request schema and can be placed in these locations: "query",
"header", "path" or "cookie". These parameters are relevant for our application as they should
be used as link targets.

Operation
An operation is the equivalent to an actual API-call. It de�nes how a request and the subsequent
response look like[10, Chapter 4.8.10]. Listing 1 shows an example of an operation object, where
all data is directly included in the de�nition without the use of references.

The format of a request can be de�ned directly inside the operation, or these might be references
to generic de�nitions in a schema by using a reference object [10, Chapter 4.8.23].

8 2 FOUNDATIONS AND LITERATURE REVIEW

{
"tags" : [

"pet"
],
"summary": "Updates a pet in the store with form data",
"operationId" : "updatePetWithForm",
"parameters" : [

{
"name": "petId",
"in" : "path",
"description" : "ID of pet that needs to be updated",
"required" : true ,
"schema": {

"type" : "string"
}

}
],
"requestBody" : {

"content" : {
"application/x-www-form-urlencoded" : {

"schema": {
"type" : "object",
"properties" : {

"name": {
"description" : "Updated name of the pet",
"type" : "string"

},
"status" : {

"description" : "Updated status of the pet",
"type" : "string"

}
},
"required" : ["status"]

}
}

}
},
"responses" : {

"200" : {
"description" : "Pet updated.",
"content" : {

"application/json" : {},
"application/xml" : {}

}
}

}
}

Listing 1: Excerpt of Operation Object Example. Adapted from the OAS [10, Chapter 4.8.10.2]

2.2 Open API Standard 9

Schemas
The schema section allows the author of the de�nition to de�ne reusable schemas that can be

referenced from other parts of the speci�cation. This allows for �exible constructs and re-use of
the same schemas across di�erent paths and operations.

Schemas can also reference other schemas to create hierarchical as well as recursive data struc-
tures.

Security
The security section allows APIs to describe what security mechanisms are used for individual
operations. This allows developers to even specify which permissions a user of the API would
require to access a certain operation [10, Chapter 4.8.27].

2.2.2 Data Types

Data Types in the OpenAPI speci�cation are based on the JavaScript Object Notation (JSON)
Schema Speci�cation. Since the latest version all JSON Schema Types are fully supported by
the OAS [11].

Hierarchical structures as described in section 2.2.1 are possible due the de�nitions in the JSON
Schema Speci�cation that de�nes the keywords used for applying sub-schemas with logic [12].

OAS recognizes all keywords of a JSON schema, which areallOf, anyOf and oneOf. These
keywords allow for conditional dymamic sub-schemas, according to Drotteboom [13, p. 56] they
can be compared to logical gates and are to be interpreted the following way:

ˆ allOf (AND) All the subschemas must be valid
ˆ anyOf (OR) At least one of the subschemas must be valid
ˆ oneOf (XOR) Exactly one subschema must be valid

By also introducing a discriminator the OAS can be used to get additional context on the sub-
schema that is to be expected [10, Chapter 4.8.25]. The schema type can still be resolved based
on it. The discriminator is a �eld in the top data structure that de�nes which schema is to be
expected in the inner data.

2.2.3 Relevant features

It is challenging to create an application that can handle every feature of the OAS. Implementing
all features would require to implement a lot of edge cases and combinations of features. Instead
the focus should lay on supporting the most common use cases and speci�cations found in the
real world. These are the key focuses chosen based on the real world usage.

Media Types
Cloud�are, a company o�ering content delivery network (CDN) services published statistics
regarding the usage of API and web tra�c in general.

This o�ers some insight on the most common used media types in APIs. Their �ndings show
that JSON compared to Extensible Markup Language (XML) is used in 97% of requests [14].

Therefore, this application should focus on supporting JSON requests.

Response codes
Most APIs are built to respond with a successful HTTP status code in 97% of cases [14], as
documentation tools such as OAS help developers avoid creating requests that cannot be handled
by an application. In contrast, HTML web tra�c has a lower success rate of 91%, as this tra�c

10 2 FOUNDATIONS AND LITERATURE REVIEW

stems mostly from end users, who might use an invalid link or could have mistyped a web url.
Therefore, a response with a 20X status code can be considered successful in an API test while
all other codes can be considered failed.

Data structures
As the OAS focuses on documenting Representational State Transfer (REST)ful APIs. We can
assume that APIs will respond with singular resources in a standard JSON format. All common
features of the JSON format should be implemented such as nested objects and arrays.

Methods
According to cloud�are, "The vast majority of API tra�c is the result of POST or GET re-
quests (98% of all requests)." [14] This shows that these methods should be supported by the
application.

11

3 Key Concepts and Terminology

In this section, some of the main terminology that will be referenced in this paper is introduced.
Further terminology is described in the glossary at section 10.

Application
In the context of this paper, the application is the whole 'Sequence Generator Tool'. It consists of
the individual components, i.E. the frontend, the backend, and also any con�guration or scripts
that are necessary to run either the frontend or backend.

Project
A project in this context is an instance that wraps all data for a speci�c REST API. It corre-
sponds with one import of an OAS de�nition into the already existing Pulse application and
is based on the OAS de�nition as well as the link �le created by Pulse during such an import.
Multiple sequences can be created in a project.

Sequence
A sequence describes a list of related endpoints. It is the main entity of the application as it
consists of endpoints to test, the order in which they are to be executed, the links between them
as well as test data to be used in the requests.

Endpoint
An endpoint in a project or sequence represents any HTTP endpoint that was imported from
the OAS de�nition during project creation. Endpoints can be added to sequences and their
respective response values can be linked to request values of subsequent endpoints.

Link
A link represents a connection between a request value (an endpoint parameter or a �eld in it's
request body) and a source for that value. The source can either be a manually created test
data �eld, or a �eld in a preceding request's response body.

Link Suggestion
As Pulse already tries to �nd possible links in the API through AI, and there potentially were
already manual links created for an API, possible links can be suggested to the user.

12 4 USER INTERFACE DESIGN

4 User Interface Design

This chapter explains the user interface design of the application. The �nal design is the result
of multiple iterations with initial user tests, feedback from the customer, and workshops with
Fabian A�olter.

The application's user interface consists of two main screens. The overview screen for a project
shows a list of the created sequences, lets the user �lter them and provides actions for the
sequences. When a sequence is selected, the editor screen is presented to the user, which lets
them change the endpoints in the sequence, add links and verify their changes.

4.1 Overview Screen

The �rst screen a user sees, when the application is started, is the sequence overview of a
project, as shown in �g. 4.1. It displays a complete list of the sequences in the project and
presents multiple possibilities to �lter those sequences.

The user can choose endpoints that are included in the sequence they are looking for as well as
adding keywords that must be included either in the title or description of the sequence.

Both �lter actions are performed through the search �eld. When the user types, they can either
select an endpoint from the appearing drop-down, that shows the projects' endpoints that match
the typed term, or they can hit enter to add the typed text as a search term.

For each sequence, the user has the possibility to edit, verify, or delete it. The main focus of the
application however is on the edit part.

Further details on how these user interactions work are provided in section 5.5.

Figure 4.1: Screenshot of the overview screen in the �nal product

4.2 Editor

When a selected sequence is edited or a new sequence is created, the editor screen visible in
�g. 4.2 is opened.

4.2 Editor 13

It consists of three sections, the �rst being the test data column, which lets the user add, edit,
and delete test data �elds that can be used as sources for links. The second column shows
the sequence �ow, which consists of endpoints that will be executed one after another. In this
column an endpoint can be selected to show its details in the third column and add or edit links.

Endpoints can be moved and deleted from the sequence directly from the sequence �ow, by
either hovering over them to make the respective buttons visible or using keyboard shortcuts.
Moving endpoints is also possible via drag-and-drop. More information about the keyboard
shortcuts can be found in section 5.3.

Figure 4.2: Screenshot of the editor screen in the �nal product with an endpoint selected

The second column also lets the user add endpoints to the sequence by clicking on the 'plus'
icon between any endpoints or at the end of the sequence, which opens a selector and displays
all available endpoint in the third column. In the selector, the user can search for text that
appears in thepath or operationId attributes of the endpoint and use the method �lter to only
show selected HTTP verbs. This behavior is showcased in �g. 4.3.

In the header bar, the user can go back to the overview with the 'arrow' icon on the left, verify
the sequence with the 'science' icon on the right, or edit the name and description using the
'cogwheel' icon.

14 4 USER INTERFACE DESIGN

Figure 4.3: Screenshot of the editor screen in the �nal product when adding a new endpoint

4.3 Low-Fidelity Design

The low-�delity design visible in �gs. 4.4 and 4.5 was created through multiple iterations with
input from Testi� employees Nejdet Dogru, Gabor Bakos, and Ece Kilis as well as the coaches
Martin Kropp and Fabian A�olter. The iterations were used to get an understanding of what
the customer wants and needs as well as developing a concept of user interaction with the
application. The low-�delity design represents the initial idea of the user interface structure
without adding too much detail on design aspects and overall look and feel.

Figure 4.4: Low-Fidelity Design: Overview
Screen

Figure 4.5: Low-Fidelity Design: Editor
Screen

4.3.1 Initial User Tests and Workshops

After the creation of an initial low-�delity design, user tests were run in order to understand if
the design is intuitive and provides all expected functionality. The methodology and results of
these tests are documented in section 8.1 of the report.

4.3 Low-Fidelity Design 15

The results of these tests, as well as workshops with Fabian A�olter, lead to numerous changes
on the design during multiple iterations.

An example of such a change is, that in early versions the sequence overview screen distinguished
between list-operations and row-operations. Even though deleting a sequence in the list would
be considered a list operation, and therefore warrant an option for the user to delete multiple
sequences at once, it was decided, based on user feedback, that the delete button should be
grouped with the sequence actions as a column action. As the creation of a complex sequence
is time consuming, avoiding accidental deletion of sequences bears more advantages to the user
than an easy process to delete multiple sequences. Furthermore, deletion of many sequences at
once can't be considered a use case that would be often encountered.

Figure 4.6 shows that to further secure the user from accidental deletion of a sequence, upon
clicking the delete button, a popup will open for the user to con�rm or cancel the operation.

Figure 4.6: Low-Fidelity Design: Delete Sequence Pop-Up

As there was also confusion around the 'plus' button to add a sequence to the list, which was
also considered a list-operation, the button �rst received an 'Add Sequence' label in further
iterations, which was removed again as it represented the only remaining list-operation and
therefore was moved to the header bar.

As a direct result of the initial user tests, the 'play' button on the overview screen became
the 'verify' button, matching the functionality on the editor screen and removing the confusion
around the 'play' icon, and the spacing between icon buttons was increased, to avoid users
clicking the wrong button by mistake.

Based on user feedback, drag-and-drop functionality for endpoint moving was introduced on the
editor screen. Save and cancel buttons and the possibility to directly edit the sequence name
were introduced based on the feedback, but later dropped in favor of an auto-save feature, which
promised a bigger improvement in user experience.

	1 Introduction
	1.1 Client
	1.2 Inital Position
	1.3 Problem Statement
	1.4 Goals
	1.5 Report Structure

	2 Foundations and Literature Review
	2.1 UI Design Principles
	2.2 Open API Standard

	3 Key Concepts and Terminology
	4 User Interface Design
	4.1 Overview Screen
	4.2 Editor
	4.3 Low-Fidelity Design
	4.4 High-Fidelity design

	5 User Experience
	5.1 User Guidance
	5.2 Autosave
	5.3 Keyboard Interaction
	5.4 Usage Of Node-Link Diagrams And Matrixes
	5.5 User Flow

	6 Application Design
	6.1 Frontend
	6.2 Backend
	6.3 REST API
	6.4 Data Design
	6.5 Data flow

	7 Implementation
	7.1 Deployment
	7.2 Frontend
	7.3 Backend

	8 User Tests
	8.1 Initial User Tests
	8.2 Final User Tests

	9 Discussion
	9.1 Results summary
	9.2 Interpretation
	9.3 Research Questions
	9.4 Limitations
	9.5 Outlook

	10 Conclusion
	Bibliography
	Glossary
	Acronyms
	List of Figures
	List of Tables
	List of Listings
	Declaration of Academic Honesty
	A Initial Assignment
	B Project Agreement
	C REST API Documentation

