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A B S T R A C T

Three-dimensional (3D) imaging is increasingly utilized in hold baggage screening (HBS) at airports. It enables 
screeners to rotate images and view cross-sectional layers of the bag (slicing). Previous studies on multi-target 
search in cabin baggage screening indicate that novices benefit from 3D-rotatable images when image quality 
is the same in 2D and 3D. We investigated the effects of 3D imaging for professional screeners in HBS, where the 
screening task is to detect bombs in pre-alarmed bags flagged by automated explosives detection systems. In our 
study, 51 professional screeners completed a highly realistic HBS task involving two levels of bag complexity in 
2D and 3D imaging conditions with the same image quality. We found that 3D imaging resulted in higher 
detection performance in terms of hit rate and sensitivity (d’ and da, two sensitivity measures of signal detection 
theory). Although better bomb detection was accompanied by increased response times, the practical implication 
of our results is that the transition to 3D HBS substantially enhances human-machine system performance in 
terms of both effectiveness and efficiency.

1. Introduction

Airports employ various security measures to prevent prohibited 
items from entering aircraft (Cordova, 2022). In cabin baggage 
screening (CBS), X-ray images of carry-on luggage are visually inspected 
by airport security officers (screeners), who search for guns, knives, 
explosives, and other prohibited items. Hold baggage, however, is stored 
in the hold of the aircraft, which is not accessible to passengers during 
flights. Therefore, hold baggage screening (HBS) only targets bombs, 
technically called improvised explosive devices (IEDs). These consist of 
four components connected to each other often using wires: an explo
sive, a detonator, a power source, and a triggering device (Turner, 1994; 
Wells and Bradley, 2012). HBS uses multiple layers for IED detection. In 
the first layer, each bag is scanned using two-dimensional (2D) X-ray 
and/or three-dimensional (3D) computed tomography (CT) machines 
equipped with automated explosives detection systems (EDS; Caygill 
et al., 2012; Harding, 2004; Singh and Singh, 2003; Wells and Bradley, 
2012). These EDS automatically highlight areas in images of bags that 
might contain explosive material. In the second layer, the images of the 
alarmed bags are sent to screeners, who visually inspect the images to 

decide whether they contain an IED. When screeners suspect an IED, 
additional measures are initiated (e.g., re-screening, explosives trace 
detection, and manual search; Hättenschwiler et al., 2019a). In Europe, 
3D imaging in HBS has been mandatory for all airports since 2024 
(European Commission, 2021). It offers interactive imaging functions 
such as 3D image rotation and slicing. These functions enable screeners 
to examine bags from multiple angles and view cross-sectional slices. In 
other regions of the world, 2D systems are still used for HBS, because 
transitioning to 3D imaging is costly, requiring significant investments 
in new baggage screening equipment, and because there are concerns 
that intensive and specific 3D HBS training is needed before screeners 
can work effectively and efficiently with 3D imaging systems. In our 
study, we investigated whether professional HBS screeners benefit from 
3D imaging functions compared to 2D imaging when image quality is 
the same, and whether these benefits are more pronounced for complex 
images.

1.1. 2D versus 3D imaging

Visual search for prohibited items in X-ray images of passenger 
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baggage is a demanding task involving attention, perception, memory 
and decision-making (Hättenschwiler et al., 2019b; for reviews, see 
Biggs et al., 2018; Biggs and Mitroff, 2014; Donnelly et al., 2019). 
Traditionally, HBS relied on 2D X-ray imaging, which generates images 
based on the absorption of X-rays (Caygill et al., 2012; Cordova, 2022; 
Harding, 2004; Singh and Singh, 2003). Multi-view 2D systems typically 
use dual-view (DV) technology, presenting bags from two angles (e.g., 
top-down and side view), which mitigates the limitations of single-view 
imaging (von Bastian et al., 2008). The 2D DV approach is particularly 
beneficial for addressing challenges in single-view images due to su
perposition (overlapping objects), unusual viewpoints, and high bag 
complexity due to opacity and clutter, all of which impact visual in
spection performance (Bolfing et al., 2008; Bravo and Farid, 2004, 2006; 
Godwin et al., 2017; Schwaninger et al., 2005a, 2005b).While 2D DV 
imaging increases inspection time, it improves target detection 
compared to 2D single-view imaging (von Bastian et al., 2008). 
Enhanced detection performance was also found when multiple views of 
a bag were presented as an image sequence (Mendes et al., 2013).

Beyond 3D imaging, 3D CT technology is increasingly utilized in HBS 
at airports. Compared to 2D DV X-ray, 3D systems offer enhanced EDS 
capabilities, reduced false alarms and improved screening efficiency 
(Cordova, 2022; Mouton and Breckon, 2015; Oftring, 2015; Velayudhan 
et al., 2022; Wells and Bradley, 2012). Moreover, 3D imaging provides 
interactive functions such as image rotation and slicing. Rotation allows 
the screener to virtually rotate images 360◦ along any axis. Slicing en
ables the screener to slice through the image by displaying 
cross-sectional layers of the bag. Both functions, rotation and slicing, 
may facilitate target detection. However, a notable drawback is that 3D 
systems sometimes have lower image quality than 2D systems used at 
airports (Velayudhan et al., 2022). Image quality is measured using a 
standard test piece to assess single wire resolution, useful penetration, 
spatial resolution, material penetration, and material discrimination 
(see Hättenschwiler et al., 2019a for details). Only a few studies have 
investigated the impact of 3D imaging on baggage screening perfor
mance. Several years ago, Hättenschwiler et al. (2019a) tested profes
sional screeners with realistic simulators of a 2D DV HBS system and a 
3D HBS system widely used at that time. While response times (RT) were 
higher with 3D, sensitivity (d’) remained similar across imaging con
ditions. The authors argued that the lack of positive effects observed for 
3D over 2D imaging was likely due to the lower image quality in the 3D 
condition offsetting the benefits of rotation and slicing. However, newer 
3D systems provide better image quality than the system used in their 
study, reaching the same image quality as some 2D systems currently 
used at airports. Counteracting effects of lower image quality on 
enhanced visual inspection performance with 3D were supported by two 
recent online studies on CBS with screening novices. They found better 
performance for 3D in experiments using the same image quality for 2D 
DV and 3D conditions (Godwin et al., 2024; Parker et al., 2022). In the 
study of Parker et al. (2022), the authors used a 3D condition with 
interactive video recordings of cabin baggage rotating 360◦ along two 
axes. They found higher sensitivity (d’) in the 3D condition compared to 
a 2D DV condition with static images. Better target detection for 3D than 
2D DV in CBS was also reported by Godwin et al. (2024), who conducted 
a study with fully rotatable images in the 3D condition. They found 
higher accuracy and increased RT for 3D compared to 2D DV. However, 
both studies focused on novices and multi-target search in CBS (for a 
review see Mitroff et al., 2015), which differs from HBS. In CBS, the 
targets include guns, knives, IEDs, and other prohibited items, whereas 
HBS focuses on detecting IEDs (Merks et al., 2018). Moreover, research 
suggests that results found with novices do not always apply to visual 
inspection of professional screeners (e.g., Chavaillaz et al., 2019; 
Hättenschwiler et al., 2019b; Swann et al., 2024; Wagner et al., 2024). 
Experience and training are crucial for achieving high detection per
formance (Halbherr et al., 2013; Koller et al., 2008; McCarley et al., 
2004; Schuster et al., 2013). Experienced screeners also use different 
search strategies than inexperienced screeners (Swann et al., 2024) and 

interact differently with automated decision support systems 
(Chavaillaz et al., 2019).

In summary, previous research suggests that the benefits of 3D im
aging in HBS can be offset by limited image quality (Hättenschwiler 
et al., 2019a). However, newer 3D systems have image quality compa
rable to that of some 2D systems currently used at airports. Studies on 
CBS indicate that novices benefit from rotatable 3D images over static 
2D DV images when image quality is the same. For professional 
screeners in HBS, however, the benefits of 3D over 2D imaging under 
equal image quality conditions remain unclear. Addressing this gap was 
the primary motivation for our study.

1.2. Measures of screener performance

Detection performance in baggage screening can be measured in 
terms of hit rate (HR; percent correct responses on target-present im
ages) and false alarm rate (FAR; percent incorrect responses on target- 
absent images). Both measures are important, because high HR is 
crucial for security, and high FAR can jeopardize checkpoint efficiency 
(Dorton and Liu, 2016; Sterchi and Schwaninger, 2015). In real-world 
baggage screening, the frequency of targets (target prevalence) is 
about 2%, because airports use threat image projection (TIP), which 
projects pre-recorded target X-ray images into the stream of visually 
inspected images (Hofer and Schwaninger, 2005). Most studies on visual 
search, however, apply a significantly higher target prevalence of 50% 
to ensure high statistical power. Target prevalence is known to affect 
participants’ tendency to decide that a target is present (criterion shift or 
response bias; Green and Swets, 1966; Hautus et al., 2021; Wolfe et al., 
2007; Wolfe and Van Wert, 2010). When targets appear more 
frequently, participants adopt a more liberal decision criterion, which 
increases both HR and FAR (Biggs and Mitroff, 2014; Buser et al., 2019; 
Menneer et al., 2010; Mitroff and Biggs, 2014; Sterchi et al., 2019; Wolfe 
et al., 2007; Wolfe and Van Wert, 2010). It is therefore recommended 
not to rely solely on HR and FAR in studies with high target prevalence 
but to also calculate sensitivity, which is independent of target preva
lence (Green and Swets, 1966; Hautus et al., 2021; Sterchi et al., 2019). 
Signal detection theory (SDT; Green and Swets, 1966) provides the 
sensitivity index d’, a measure of sensitivity widely used in research on 
visual inspection performance in baggage screening (e.g., Godwin et al., 
2010b; Huegli et al., 2020; Menneer et al., 2010; Muhl-Richardson et al., 
2021; Rusconi et al., 2015; Schwaninger et al., 2010; Yu and Wu, 2015). 
SDT posits that each decision on whether a target is present is based on 
two subjective evidence distributions (noise and signal-plus-noise). 
Assuming that these distributions are normal and of equal variance, d’ 
is defined as the distance between the means of these distributions. 
However, several studies showed that the equal variance assumption 
does not always hold for visual search in baggage screening (Godwin 
et al., 2010a; Sterchi et al., 2019; Van Wert et al., 2009; Wolfe et al., 
2007; Wolfe and Van Wert, 2010). Alternative measures, such as da 
(Simpson and Fitter, 1973), which account for unequal variance be
tween evidence distributions, should therefore be considered. Following 
the recommendations of Sterchi et al. (2019), HR, FAR, d’, and da with a 
slope parameter (standard deviation ratio) of 0.5 should be used to 
assess visual inspection performance in baggage screening tasks. In 
addition, target-present and target-absent RT can provide insights into 
visual inspection processes. RT are also relevant from a practical 
standpoint, as they directly impact baggage throughput.

1.3. Present study

The present study examined the performance of 3D imaging 
compared to 2D DV imaging in HBS. We extended previous research by 
using images of a newer 3D HBS system than that used in Hättenschwiler 
et al. (2019a), providing comparable image quality to some of the 2D 
HBS systems currently used at airports. Addressing limitations of pre
vious research and ensuring high ecological validity, we compared the 
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performance of professional HBS screeners in a realistic screening task 
using authentic 3D CT images and an interface replicating typical 3D 
imaging functions. We used the same image quality in both the 2D and 
3D conditions. Additionally, bags with varying levels of complexity were 
used to assess whether 3D imaging benefits are more pronounced for 
complex bags. To provide a comprehensive comparison of 2D and 3D 
imaging effects in HBS, we examined the performance measures d’, da, 
HR, FAR, and RT.

2. Method

2.1. Participants

Fifty-four professional hold baggage screeners were recruited from 
an international airport to participate in a simulated HBS task conducted 
at facilities near the airport. A priori power analysis using G*Power 3.1 
(Erdfelder et al., 2009) indicated that this sample size was more than 
sufficient to detect medium to large effects using a mixed analysis of 
variance (ANOVA; at least 38 participants are needed to detect medium 
to large effects with an alpha error probability of 0.05 and a statistical 
power of 0.85). All screeners were trained and certified according to 
European aviation security regulations (European Commission, 2015). 
Participants had a mean age of 48 years (SD = 9.4), an average of 8.5 
years of work experience with 2D baggage screening (SD = 5.6), and no 
prior experience with 3D baggage screening. They were randomly 
assigned to either the 2D or the 3D imaging condition. All screeners 
provided informed consent and were free to withdraw from the exper
iment at any time. Three screeners did not complete the experiment, 
resulting in a final sample of 51 screeners (31 females, 20 males), with 
24 in the 2D condition (14 females, 10 males) and 27 in the 3D condition 
(17 females, 10 males).

2.2. Design

We used a 2x2 mixed design with imaging condition (2D, 3D) as a 
between-subjects factor and bag complexity (low, high) as a within- 
subjects factor. The dependent variables were d’, da, HR, FAR, target- 
present RT, and target-absent RT.

2.3. Apparatus and stimuli

Stimuli were presented using X-Ray Tutor Version 4 (XRT4; CASRA - 
Center for Adaptive Security Research and Applications, 2024. 
https://www.casra.ch/.), a highly realistic simulator software for 
computer-based training and testing of screeners. XRT4 features an 
interface that is similar to those of 2D and 3D imaging systems used at 
airports. The task included 256 images of hold baggage. Half of them (n 
= 128) contained an IED (target-present images), while the other half (n 
= 128) did not contain any prohibited items (target-absent images). 
Both image sets (target-present and target-absent) contained an equal 
number of low- and high-complexity bag images. We used real images of 
hold baggage recorded with a 3D HBS system with higher image quality 
than that used in Hättenschwiler et al. (2019a). Bag complexity was 
rated by three aviation security experts from the Center for Adaptive 
Security Research and Applications (CASRA - Center for Adaptive Se
curity Research and Applications, 2024. https://www.casra.ch/.). The 
experts had several years of experience working as screeners and in 
stimuli creation for computer-based training and testing. Bag complexity 
was defined as: “How difficult a bag is to visually inspect depending on 
its content. Bag complexity increases with greater amount of clutter, 
number of items, and metallic objects.” To ensure a shared under
standing of bag complexity levels, the three experts first reviewed all 
images collectively. They then independently rated each image on a 
10-point scale (1 = very low complexity, 10 = very high complexity). To 
ensure consistency in bag complexity classification, images with dis
crepancies of more than three rating points between experts were 

excluded. From the remaining images, 64 low-complexity images (mean 
rating ≤5) and 64 high-complexity images (mean rating >5) were 
selected as target-absent images. The experts created target present 
images by developing 64 distinct IEDs using a variety of detonators, 
explosive materials, triggers, and power sources connected to each 
other. These IEDs were then 3D recorded and digitally merged into the 
target-absent images using image merging algorithms of CASRA. Each 
IED was used twice, once in a low-complexity and once in a 
high-complexity bag image. Because in HBS only images that contain an 
EDS alarm are sent to screeners for visual inspection (see introduction), 
a red frame was placed around the IEDs in the target-present images. In 
the target-absent images, the frames were placed around materials and 
items that sometimes induce false alarms in HBS (e.g., certain chocolate, 
cheese, cosmetics, fruits, shoes). The same set of 3D CT recordings was 
used for both the 2D and 3D conditions to ensure the same image 
quality. In the 3D condition, the images were rotatable in three di
mensions and sliceable (see supplementary material for a video 
demonstration of the 3D condition, including rotation and slicing). In 
the 2D condition, the images were presented in DV from two fixed an
gles, differing by 90◦ (side view and top view), rotation and slicing were 
not possible. The initial views in the 3D condition were used as the side 
and top view in the 2D condition. Fig. 1 shows the XRT4 simulator 
interface used in the 2D and the 3D conditions with images of low bag 
complexity (a) and high bag complexity (b). The screening task was 
conducted on 19″ TFT monitors, with images covering approximately 
two-thirds of the screen. Participants were seated approximately 60 cm 
from the screen.

2.4. Procedure

After providing informed consent, participants received instructions 
on how to use the simulator to visually inspect the 2D DV images 
(screeners in the 2D group) or the 3D CT images (screeners in the 3D 
group). Participants were instructed to visually inspect each image and 
decide whether it contains an IED. They were told that, as in real-life 
operations, the EDS marks areas that could be explosive material. As 
the participants were certified screeners, they knew that an IED consists 
of four components (explosive material, detonator, triggering device, 
and power source) that are connected to each other, with varying dis
tances between them depending on the IED type. Participants were 
informed about the number of images and the target prevalence. They 
were instructed to work quietly, focused, and as if they were working at 
the airport. They were told to decide for each bag image as quickly and 
accurately as possible whether it contains an IED. Each decision had to 
be indicated by clicking either an OK button (indicating that no target is 
present) or NOK button (indicating that a target is present) on the 
simulator interface (see Fig. 1). Images were displayed one after the 
other and up to 90 s before disappearing. If the time limit for an image 
was exceeded, screeners still had to indicate their decision before the 
next image was displayed. After receiving instructions, participants 
completed a practice block of 10 trials (5 target-absent and 5 target- 
present images in random order) to familiarize themselves with the 
task and the interface. Participants received feedback on each response 
during practice trials. After the practice block, the actual test started 
without feedback on responses, containing a total of 256 trials, divided 
into two blocks of equal size (128 images each). Target prevalence was 
50% in each block. Order of blocks was counterbalanced across partic
ipants, and the order of images within each block was randomized for 
each participant. Participants were instructed to have a break of at least 
10 min after completing the first block. The completion of the experi
ment took 71 min on average (SD = 10 min). While European regula
tions stipulate that screeners have a break every 20 min of continuous 
visual inspection of X-Ray images (European Commission, 2015), recent 
studies suggest that no major decline in screener performance is ex
pected over the continuous screening durations used in our experiment 
(Buser et al., 2019, 2023; Latscha et al., 2024). Up to four participants 
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completed the task in the same room, reflecting typical HBS scenarios 
(Kuhn, 2017). Screeners worked individually, quietly, and under 
supervision.

2.5. Measures

The dependent variables were defined as follows, whereby hits are 
correct responses on target-present trials, misses are incorrect responses 
on target-present trials, correct rejections are correct responses on 
target-absent trials, and false alarms are incorrect responses on target- 
absent trials. z is the inverse of the cumulative distribution function of 
the standard normal distribution, and s (in our case set to 0.5) is the ratio 
between the standard deviations of the target-absent (noise) and target- 
present (signal-plus-noise) distribution (Hautus et al., 2021; Sterchi 
et al., 2019). 

HR=
hits

hits + misses 

FAR=
false alarms

false alarms + correct rejections 

d’= z(HR) – z(FAR)

da =

̅̅̅̅̅̅̅̅̅̅̅̅̅
2

1 + s2

√

× [z(HR) − sz(FAR)]

Target-present RT = Mean time from image onset to the responses on 
target-present trials

Target-absent RT = Mean time from image onset to the responses on 
target-absent trials.

2.6. Analyses

To rule out significant sample differences between the 2D and 3D 
groups, we computed independent-samples t-tests on the variables age 
and tenure. Screener performance was examined by computing two-way 
mixed ANOVAs for each of the above-mentioned measures with imaging 
condition (2D, 3D) as between-subjects factor and bag complexity (low, 
high) as within-subjects factor. We did not analyse differences in 
response tendency (criterion) because it is not clear how to interpret this 
measure across different levels of sensitivity (Hautus et al., 2021). Post 
hoc comparisons were conducted using Holm-Bonferroni corrections 
(Holm, 1979). All analyses were conducted using R Statistical Software 
(v4.3.1; R Core Team, 2023).

Fig. 1. Interface of the XRT4 simulator with images of low bag complexity (a) and high bag complexity (b). In the 3D condition, the image on the left could be 
rotated in three dimensions, while the image on the right could be sliced (see supplementary material for a video demonstration of the 3D condition, including 
rotation and slicing). In the 2D condition, the images appeared as static dual views. Suspicious areas where explosive material might be present were highlighted with 
a red frame in both imaging conditions.
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3. Results

There was no statistically significant difference in age between par
ticipants in the 2D and 3D conditions (2D: M = 48.9, SD = 8.7; 3D: M =
47.4, SD = 10.3), t(49) = 0.58, p = .566, and no significant difference in 
tenure (2D: M = 9.7, SD = 6.3; 3D: M = 7.4, SD = 4.5), t(49) = 1.50, p =
.140. Table 1 shows the means (M) and standard deviations (SD) for the 
performance measures by imaging condition (2D, 3D) and bag 
complexity (low, high). Table 2 provides the F values, p values, and 
effect sizes from the two-way mixed ANOVAs for each dependent 
variable.

3.1. Sensitivity

Fig. 2 shows the means and 95% confidence intervals (error bars) for 
the sensitivity measures d’ and da by imaging condition (2D, 3D) and 
bag complexity (low, high).

For both sensitivity measures (d’ and da), there were significant main 
effects of imaging condition, with higher sensitivity in the 3D condition 
(d’: M = 2.26, SD = 0.70; da: M = 2.05, SD = 0.62) than in the 2D 

condition (d’: M = 1.62, SD = 0.36; da: M = 1.29, SD = 0.39). Moreover, 
there was a significant main effect of bag complexity for both sensitivity 
measures, with higher sensitivity for low (d’: M = 2.16, SD = 0.64; da: M 
= 1.93, SD = 0.61) than high bag complexity (d’: M = 1.76, SD = 0.66; 
da: M = 1.45, SD = 0.70). There was no significant interaction between 
imaging condition and bag complexity for either d’ or da.

3.2. Hit rate and false alarm rate

For HR, there were significant main effects of imaging condition (2D: 
M = 0.65, SD = 0.12; 3D: M = 0.82, SD = 0.98) and bag complexity (low: 
M = 0.79, SD = 0.12; high: M = 0.68, SD = 0.17), along with a signif
icant interaction between these variables. Post hoc tests revealed that 
HR was significantly higher in the 3D condition compared to the 2D 
condition for both low-complexity (p < .001) and high-complexity bags 
(p < .001), with a larger difference observed for high-complexity bags. 
Additionally, HR was significantly higher for low than high bag 
complexity in both the 2D (p < .001) and 3D conditions (p < .001), 
though the difference was smaller in the 3D condition. For FAR, there 
were no significant main effects of imaging condition (2D: M = 0.13, SD 
= 0.10; 3D: M = 0.12, SD = 0.10) and bag complexity (low: M = 0.12, 
SD = 0.09; high: M = 0.13, SD = 0.11), and no significant interaction 
between these variables.

3.3. Response times

Fig. 3 shows the means and 95% confidence intervals (error bars) for 
HR, FAR, target-present RT, and target-absent RT by imaging condition 
(2D, 3D) and bag complexity (low, high).

We observed slightly higher target-present RT with 3D (M = 11.04, 
SD = 2.79) than 2D (M = 10.07, SD = 2.57), although the main effect of 
imaging condition was not significant. There was a significant main 
effect of bag complexity (low: M = 9.54, SD = 2.68; high: M = 11.64, SD 
= 2.88), with higher target-present RT for high-complexity bags. There 
was no significant interaction between imaging condition and bag 
complexity for target-present RT. For target-absent RT, there were sig
nificant main effects of imaging condition (2D: M = 9.96, SD = 3.10; 3D: 
M = 11.66, SD = 2.59) and bag complexity (low: M = 10.07, SD = 2.77; 

Table 1 
Performance by imaging condition (2D, 3D) and bag complexity (low, high).

Variable Imaging Condition Bag Complexity 
Low

Bag Complexity 
High

M SD M SD

d’ 2D 1.82 0.36 1.43 0.44
3D 2.45 0.69 2.05 0.69

da 2D 1.57 0.37 1.04 0.52
3D 2.25 0.60 1.82 0.65

HR 2D 0.73 0.12 0.57 0.14
3D 0.86 0.08 0.78 0.12

FAR 2D 0.14 0.11 0.12 0.09
3D 0.11 0.10 0.13 0.10

target-present RT (s) 2D 9.10 2.40 11.05 2.87
3D 9.92 2.88 12.17 2.83

target-absent RT (s) 2D 9.40 2.94 10.51 3.37
3D 10.66 2.52 12.67 2.91

Note. M = mean, SD = standard deviation.

Table 2 
F value, p value and effect size (η2

p) for the main effects of imaging condition (2D, 3D) and bag complexity (low, high), and their interaction.

Variable Imaging Condition Bag Complexity Interaction

F p η2
p F p η2

p F p η2
p

HR 28.84 < .001 .370 127.60 < .001 .723 17.90 < .001 .267
FAR 0.18 .677 .004 0.05 .826 .001 3.91 .054 .074
d’ 16.85 <.001 .256 63.32 <.001 .564 0.01 .955 .000
da 25.26 <.001 .340 95.01 <.001 .660 1.04 .312 .021
target-present RT 1.65 .205 .033 144.92 <.001 .747 0.69 .409 .014
target-absent RT 4.59 .037 .086 55.46 <.001 .531 4.58 .037 .085

Note. Degrees of freedom were identical across all analyses: F(1, 49). Statistically significant effects (p < .05) are presented in bold.

Fig. 2. Sensitivity indices d’ (left) and da (right) by imaging condition (2D, 3D) and bag complexity (low, high). Error bars represent 95% confidence intervals.
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high: M = 11.65, SD = 3.29), as well as a significant interaction between 
these variables. Post hoc tests revealed that target-absent RT was 
significantly higher with 3D compared to 2D for high bag complexity (p 
= .018). For low bag complexity, the difference in target-absent RT 
between 2D and 3D was not significant (p = .106). Target-absent RT was 
significantly higher for high bag complexity than for low bag complexity 
in both the 2D (p < .001) and 3D conditions (p < .001).

4. Discussion

In this study, we tested professional HBS screeners using highly 
realistic simulators and stimuli in 2D and 3D imaging conditions with 
the same image quality. Both conditions utilized the same set of images, 
which varied in bag complexity (low, high). To assess the impact of 
imaging technology on performance, we analysed sensitivity indices (d’ 
and da), hit rate (HR), false alarm rate (FAR), and response times (target- 
present and target-absent RT) as dependent variables.

4.1. Sensitivity

We found higher sensitivity in the 3D condition compared to the 2D 
condition. This is consistent with the assumption that rotation and 
slicing in 3D imaging support a more comprehensive visual inspection. 
In our study, image quality was the same across the 2D and 3D condi
tions, representing a key difference from previous research conducted by 
Hättenschwiler et al. (2019a). In their study, the authors found similar 
sensitivity for 2D and 3D. They argued that the absence of a difference in 
sensitivity found in their study might be due to the poorer image quality 
in the 3D compared to the 2D condition, which may have offset the 
potential benefits of rotation and slicing. In our study, we used 3D im
ages from an HBS system with higher image quality than the one used in 
Hättenschwiler et al. (2019a), and we compared screeners’ performance 
under 3D and 2D imaging conditions with the same image quality. We 
observed better detection performance in terms of sensitivity in the 3D 
condition compared to the 2D condition, indicating that screeners 
benefit from 3D imaging functions when image quality is the same. 
Notably, the positive effect on detection performance observed in our 

study was robust in the sense that we observed higher sensitivity for 3D 
regardless of the sensitivity measure used (d’ or da). Two recent online 
studies that compared 2D and 3D imaging with the same image quality 
found similar results for CBS with novices: Parker et al. (2022) found 
higher sensitivity in terms of d’ when they presented bag recordings as 
interactive video sequences with bags rotating around two axes, 
compared to static 2D DV images. Godwin et al. (2024) did not report 
sensitivity indices but found higher response accuracies with 3D rotat
able bag images compared to 2D DV images. Our study shows that 
screeners in HBS also benefit from the use of 3D imaging functions. 
Furthermore, these functions appear to be advantageous even for 
screeners with limited 3D experience or 3D specific training.

Regarding effects of bag complexity, we found that screeners showed 
higher sensitivity for images of low-complexity bags, regardless of the 
imaging condition. This finding aligns with prior research showing that 
high bag complexity impairs the detection of prohibited items in visual 
inspection (Bolfing et al., 2008; Schwaninger et al., 2005a, 2005b). 
While these earlier studies focused on 2D images, our results indicate 
that the impact of bag complexity also applies for the visual inspection of 
3D images. Furthermore, our findings suggest that bag complexity is still 
relevant when suspicious areas that might contain explosive material 
(which is one of the components of an IED) are highlighted by the EDS.

4.2. Hit rate and false alarm rate

HR was higher in the 3D condition than in the 2D condition, indi
cating that screeners are better at detecting IEDs in target-present im
ages when they can rotate and slice the images compared to when they 
inspect static 2D views. As explained in the introduction, IEDs consist of 
explosive material, a detonator, a power source, and a triggering device 
connected to each other often using wires (Turner, 1994; Wells and 
Bradley, 2012). Most likely, the 3D imaging functions facilitated iden
tifying these IED components. We also found higher HR for 
low-complexity bags in both imaging conditions. In contrast to sensi
tivity, where no statistically significant interaction was found between 
imaging condition and bag complexity, we did observe a significant 
interaction for HR: the increase in HR between the 2D and the 3D 

Fig. 3. Hit rate (HR), false alarm rate (FAR), target-present RT, and target-absent RT by imaging condition (2D, 3D) and bag complexity (low, high). Error bars 
represent 95% confidence intervals.
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condition was more pronounced for images of high bag complexity. This 
indicates that for bags with high levels of opacity and clutter, which are 
difficult to inspect with 2D imaging (Bolfing et al., 2008; Schwaninger 
et al., 2005b), 3D imaging functions are even more advantageous. We 
did not observe any significant effects for FAR, which suggests that there 
was no shift in the screeners’ decision criterion. From a practical 
standpoint, this is favorable, because an increase in FAR would reduce 
HBS efficiency (Hättenschwiler et al., 2019a). Bag complexity did not 
impact FAR in either the 2D or 3D condition. Previous research 
involving a CBS multi-target search task found lower FAR for 2D than for 
3D (Godwin et al., 2024). Further research could investigate whether 
effects of 3D imaging on FAR are more pronounced in CBS, where 
screeners have to search for guns, knives, IEDs, and other prohibited 
items, than in HBS, where the targets are only IEDs.

4.3. Response times

RT was higher in the 3D than in the 2D condition, most likely because 
using rotation and slicing required screeners to invest additional time. 
This finding aligns with previous research indicating that 3D imaging 
comes at the cost of higher RT (Godwin et al., 2024; Hättenschwiler 
et al., 2019a). However, in our study, post hoc tests revealed that the 
difference in RT between imaging conditions was statistically significant 
only for target-absent images of high-complexity bags. For 
target-present RT, we found no statistically significant difference be
tween 2D and 3D. This means that a potential speed-accuracy trade-off 
was limited to target-absent images of high-complexity bags: a signifi
cant increase in detection performance was accompanied by small costs 
in RT. Previous studies found larger RT differences between 2D and 3D 
imaging conditions (Godwin et al., 2024; Hättenschwiler et al., 2019a). 
One possible explanation is that the search component in the task used 
by Godwin et al. (2024) was more dominant compared to our HBS task, 
possibly leaving more room for effects on search duration in their study. 
Regarding bag complexity effects, we found that both target-present RT 
and target-absent RT increased for high-complexity bags compared to 
low-complexity ones. This suggests that bags with high levels of opacity 
and clutter prompt screeners to spend more time evaluating the suspi
cious areas.

4.4. Practical implications

We found that 3D imaging, using images of a newer 3D HBS system 
with better image quality than the one tested by Hättenschwiler et al. 
(2019a), had clear advantages over 2D imaging with the same image 
quality, including increased sensitivity and higher HR. Moreover, the 
increase in HR was more pronounced for complex bags. Notably, we 
observed these positive effects even though the HBS screeners in our 
study had extensive experience with 2D imaging, no prior experience 
with 3D imaging, and only 10 practice trials with 3D imaging before the 
main test. 3D-specific computer-based and on-the-job training, as well as 
hands-on experience with 3D HBS, might further enhance its beneficial 
effects. Our findings suggest that the transition from 2D to 3D imaging 
systems is a meaningful and effective advancement in HBS, leading to 
improved detection and enhanced security. However, better detection 
with 3D imaging was accompanied by an increase in target-absent RT. 
Notably, target-absent RT is particularly relevant in practice, as most 
images sent to visual inspection in HBS do not contain a threat. Never
theless, this increase in target-absent RT does not compromise the 
overall superiority of 3D HBS over 2D HBS in terms of efficiency. On the 
contrary, even with larger RT differences, as observed in Hättenschwiler 
et al. (2019a), 3D HBS outperforms 2D HBS in overall human-machine 
system performance regarding efficiency (i.e., baggage throughput). 
This is because 3D HBS systems not only achieve higher HR but also 
much lower FAR than 2D HBS systems (Oftring, 2015; Velayudhan et al., 
2022). The lower FAR significantly improves throughput because fewer 
images of alarmed bags are sent to screeners for visual inspection.

4.5. Limitations and further research

To achieve high statistical power for assessing differences in detec
tion performance, the target prevalence in our study was higher than in 
real-world HBS, where it is typically around 2% due to TIP (Hofer and 
Schwaninger, 2005). As noted in the introduction, target prevalence 
influences HR and FAR through a criterion shift (Green and Swets, 1966; 
Hautus et al., 2021; Wolfe et al., 2007; Wolfe and Van Wert, 2010). We 
therefore calculated sensitivity, which is independent of target preva
lence (Green and Swets, 1966; Hautus et al., 2021; Sterchi et al., 2019). 
Further research could examine HR and FAR using TIP data to compare 
2D and 3D HBS under operational conditions with low target preva
lence. Another limitation of our study is that the 3D imaging condition 
did not allow us to separate the effects of rotation and slicing. A recent 
study found that sensitivity increased when a 3D imaging condition was 
followed by a 2D slice view in an online experiment (Muhl-Richardson 
et al., 2025). Future studies could further examine the effects of rotation 
and slicing separately to better understand their individual contribu
tions to screener performance in HBS. Additionally, future studies could 
use eye tracking and assess subjective perceptions to gain further in
sights into cognitive processes, usability, and user experience. Further
more, we found benefits of 3D imaging compared to 2D imaging even 
though the screeners had extensive experience with 2D and no previous 
experience with 3D imaging. Further research could examine whether 
the benefits of 3D imaging are even larger when screeners gain more 3D 
imaging experience. Finally, it should be noted that the benefits of 3D 
imaging over 2D imaging may depend on other factors, such as 
airport-specific operational environments, machine types, training 
protocols, and equipment configurations. Future research could explore 
how such factors impact the benefits of 3D HBS.

5. Conclusion

The results of our study indicate that the visual inspection of hold 
baggage benefits from 3D imaging functions (rotation and slicing), 
compared to 2D imaging with the same image quality. The 3D imaging 
functions appear to be particularly beneficial when bag complexity is 
high. Notably, the positive effects were found for professional HBS 
screeners who had no prior experience with 3D imaging. However, 
better IED detection with 3D came at some cost regarding RT.
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