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SUMMARY
Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface.
The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope
design. A fundamental premise for the predictability of antibody-antigen binding is the existence of para-
tope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset
of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together
compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that
this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level
using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from
non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions be-
tween paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to
demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.
INTRODUCTION

Antibody-antigen binding ismediated by the interaction of amino

acids at the paratope-epitope interface of an antibody-antigen

complex. A long-standing question in the fields of immunology

and structural biology is whether paratope-epitope interaction

is predictable. The predictability of paratope-epitope binding is

a prerequisite for predicting antibody specificity and in silico anti-

body and vaccine design. So far, however, it remains unclear

whether antibody-antigen binding is predictable (Brown et al.,

2019; Raybould et al., 2019a; Sela-Culang et al., 2013).

Antibodybinding to theepitope ismainly formedby the threehy-

pervariable regions termed complementarity-determining regions

(CDRs) situated in both antibody heavy and light chains (Barlow

et al., 1986; Inbar et al., 1972;WuandKabat, 1970). The hypervari-

ability of the CDR3 is key to the immunological specificity of anti-
This is an open access article under the CC BY-N
bodies (Xu andDavis, 2000) and is generated by somatic recombi-

nation of the variable (V), diversity (D, only for the heavy chain), and

joining (J) genes of the B cell genomic locus (Tonegawa, 1983).

Combinatorial diversity from rearranged germline gene segments,

somatic hypermutation, and antigen-driven selection steps en-

ables antibodies to interact specifically with virtually any antigen

(Landsteiner, 1936; Padlan, 1977; Tonegawa, 1983).

The most reliable method for identifying paratope-epitope

pairs is by solving the 3D structure of antigen-antibody com-

plexes and determining which amino acids in the two partners

make contact with each other (Van Regenmortel, 2014). It has

been observed repeatedly that paratopes localize mostly, but

not exclusively, to CDRs (Kunik et al., 2012a), and that certain

amino acids are preferentially enriched or depleted in the anti-

body binding regions (ABRs) (Mian et al., 1991; Nguyen et al.,

2017; Ramaraj et al., 2012; Sela-Culang et al., 2013; Wang
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et al., 2018). For epitopes, several analyses have shown that their

amino acid composition is essentially indistinguishable from

that of other surface-exposed non-epitope residues if the corre-

sponding antibody is not taken into account (Benjamin et al.,

1984; Berzofsky, 1985; Burkovitz et al., 2013; Dalkas et al.,

2014; Greiff et al., 2020; Jespersen et al., 2019; Kringelum

et al., 2013; Kunik and Ofran, 2013; Lawrence and Colman,

1993; MacCallum et al., 1996; Mahajan et al., 2019; Ofran

et al., 2008; Peng et al., 2014; Ponomarenko and Bourne,

2007; Raghunathan et al., 2012; Sela-Culang et al., 2013; Sivalin-

gam and Shepherd, 2012).

Recently, computational andmachine learning approaches for

the sequence-based and structural prediction of paratopes

(Deac et al., 2019; Kunik et al., 2012b; Liberis et al., 2018), epi-

topes (Kringelum et al., 2012), or paratope-epitope (antibody-an-

tigen) interaction (Baran et al., 2017; Deac et al., 2019; Jespersen

et al., 2019; Kilambi and Gray, 2017; Krawczyk et al., 2013) are

accumulating (for a more complete list of references, see Brown

et al., 2019; EL-Manzalawy et al., 2017; Esmaielbeiki et al., 2016;

Norman et al., 2020; Raybould et al., 2019a; and Sanchez-Trin-

cado et al., 2017). Although the accuracy for the prediction of

paratopes seems generally higher than that for epitopes, it has

not been conclusively shown that antibody-antigen interaction

is a priori predictable and if so, based on what theoretical and

biological grounds (Brown et al., 2019; Greenbaum et al., 2007).

Recent reports have provided preliminary evidence for the po-

tential predictability of antibody-antigen interaction. First, the

antibody repertoire field has now established that antibody

sequence diversity underlies predictable rules (Elhanati et al.,

2015; Greiff et al., 2017a, 2017b). Second, the presence of trans-

ferable ‘‘specificity units’’ between distinct antibody molecules

was recently suggested by showing that tightly binding func-

tional antibodies may be conceived by designing and improving

seemingly unrelated paratopes (Nimrod et al., 2018).

Previous efforts toward predicting paratope-epitope interaction

havebeen stifledbyboth a one-sided investigation of either exclu-

sively theparatopeor the epitope and the failure tobreak down the

problemof antibody-antigen interaction into its fundamental units.

The fundamental units of antibody-antigen interaction are the

sequence regions on the antibody and the antigen that compose

the paratope-epitope interface. The 3D complex structure of an

epitope typically emerges from different sub-peptides of the pro-

tein, folded in the same place. Therefore, the binding units reach

beyond a single linear peptide, hindering the power of sequence-

based prediction tools. We conjectured that the comparison of

those interaction units across antibody-antigen complexes may

lead to the discovery of a general vocabulary of antibody-antigen

interaction. If a general compact (restricted) vocabulary for anti-

body-antigen interaction existed that unambiguously formed par-

atope-epitope pairs, then paratope-epitope interaction is a priori

predictable. Here, we show that such a vocabulary exists.

RESULTS

The majority of paratope interacting residues are
located in the antibody CDRs
To gain a representative picture of antibody-antigen 3D interac-

tion, we compiled a diverse dataset of 825 non-redundant anti-
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body-antigen complexes (protein antigen only) (Figure 1A). Anti-

body sequences mapped to a diverse set of V genes

(Figure S1A), and antigen sequences belonged to a diverse set

of antigen classes (Figures S1B–S1G). Thus, the dataset is

neither biased to one type of antibody or antigen class nor to se-

quences of high similarity.

We identified the set of interacting residues at the interface of

antibody-antigen structures by using a heavy-atom (non-

hydrogen atoms) distance cutoff of <5 Å (Ostmeyer et al., 2019)

(see STAR Methods and Figure S3 for an examination of the

robustness of the distance cutoff). Antibody-antigen amino acid

pairs within this distance were designated as interacting residues

(Figures 1A and 1B). Together, the sets of antibody and antigen in-

teracting residues form paratope-epitope pairs. In accord with

previous reports (MacCallum et al., 1996; Stave and Lindpaintner,

2013), paratope residuesmapped overwhelmingly to the CDRs 1–

3 (VH,CDR1–3: 89.5% and VL,CDR1–3: 89.2%; Figure 1C). Because

we used the Martin numbering scheme for CDR and framework

region (FR) annotation (see STAR Methods), which mostly ex-

cludes germline gene residues from the CDR3, the above

numbers demonstrate that germline-gene residues surrounding

theCDR3 (FR3, FR4) contribute relatively little to antibody-interac-

tion, and that CDR3 paratope-epitope interaction is essentially

non-germline gene residue driven (Abhinandan and Martin,

2008; Dondelinger et al., 2018). Finally, we found that the position

of paratope interacting residues correlated significantly (p < 0.05)

with sites of (inferred) somatic hypermutation hotspots (SHMs)

(Spearman/Pearson correlation: 0.31–0.52/0.44–0.58; Fig-

ure S2E), suggesting that interacting residues investigated herein

have been subjected to antigen-driven selection.

Paratopes are enriched in aromatic and polar residues,
whereas epitopes are enriched in charged residues
We found an enrichment of aromatic residues (e.g., tyrosine) in

paratope sequences and polar and charged residues in epitopes

(e.g., lysine and arginine) (Figures S2A–S2D), in accord with pub-

lished literature (Peng et al., 2014; Ramaraj et al., 2012) validating

further the robustness of our definition of interacting residues.

Amino acid usage correlation was relatively low between

paratope and epitope residues (rSpearman/Pearson: 0.13–0.49;

Figure S5E). Paratope and non-immune protein-protein interac-

tion (PPI) residues were uncorrelated (rSpearman/Pearson:

0.06–0.29), whereas PPI and epitope were moderately corre-

lated (rSpearman/Pearson: 0.57–0.71; Figure S5E).

Finally, we investigated amino acid contact pairs of paratope

and epitopes across CDR/FR regions and non-immune PPI.

We found substantial cross-type (type: charged, polar, aromatic,

hydrophobic/nonpolar) interactions both at the local (CDR/FR re-

gion wise) and the global level (full sequence; Figure S7C), while

in contrast, PPI amino acid interaction preferences were pre-

dominantly within type (Figure S7D).

Structural interaction motifs enable a unified
comparison of paratope-epitope interfaces of unrelated
antibody-antigen complexes
The fundamental units of antibody-antigen interaction are the

sequence regions on the antibody and the antigen that comprise

the interacting (paratope, epitope) and non-interaction residues



Figure 1. Characterization of interacting residues at the paratope-epitope interface

(A) We characterized antibody-antigen interaction using 825 publicly available 3D structures deposited in the Antibody Database (AbDb) (see STAR Methods).

(B) A paratope was defined as the set of interacting amino acid residues within a particular FR or CDR of an antibody. An epitope is defined as the set of antigen

amino acid residues that interact with a paratope. Epitopes are annotated according to the FR or CDR of the corresponding paratopes (see antigen ‘‘region’’ in D;

see STAR Methods). Gaps are defined as the non-interacting residues that lie in between interacting residues within each FR or CDR.

(C) The interacting residues mapped predominantly to the CDRs and less so to the FRs.

(D) Number of gap (non-interacting) and interacting residues by CDRs and FRs.
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(gaps, Figure 1B). Paratope lengths ranged between 1 and 15

(median: 1–5) residues in the CDRs and 1 and 12 (median: 1–2)

residues in the FR regions, whereas the length of gaps ranged

between 1 and 7 (median: 1–2) residues in CDRs and 1 and 28

(median: 1–20) residues in the FR regions (Figure 1D). Epitopes

can span up to 12 residues with gaps up to 435 residues (Fig-
ure 1D). Thus, the paratope-epitope interface cannot be

described exclusively by continuous stretches of amino acids.

To compare structural patterns of paratope-epitope across un-

related antibody-antigen complexes, we devised a structural

interaction motif notation that accounts simultaneously for gaps

and residues in both paratopes and epitopes. A paratope or
Cell Reports 34, 108856, March 16, 2021 3



Figure 2. Structural interaction motifs represent a compact vocabulary for the composition of the paratope-epitope interface

(A) We devised a structural interaction motif notation that accounts simultaneously for gaps and interacting residues in both paratopes and epitopes.

(B) Length distribution of paratope and epitope motifs by FR/CDR.

(C) Absolute and relative overlap of paratope and epitope motifs (Venn diagram).

(D) Estimation of the potential (observed + unobserved) motif diversity using the Chao1 estimator (see STAR Methods).

(E) For each of the four most highly shared (across structures) interaction motifs (Figures S4A–S4I), the sequential (dimer [2-mer]) dependency signature was

determined (see STAR Methods).

(F) Hierarchical clustering of sequential dependencies (2-mers) that were shared among all four paratope or epitope motifs.

(G) Venn diagrams: overlap of sequential dependencies (2-mers) shared across paratope or epitope motifs. Density plots: we tested whether the 2-mer distri-

bution (sequential dependencies) observed in (F) for each of the four motifs could be caused by random effects. To this end, we sampled 100 times 2-mers from

the number of 2-mers possible according to the number of sequences mapping to each motif (E) and calculated the correlation either among all randomly drawn

2-mer distributions (gray: epitope, light blue: paratope) or between an observed and randomly drawn one (black: epitope, dark blue: paratope). The significance in

the difference between the distributions was tested using the Kolmogorov-Smirnov (KS) test.
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epitope structural interaction motif is composed of interacting

paratope and epitope amino acid residues, as well as non-inter-

acting ones (gap). Specifically, we encoded any interacting resi-

due as capital X and any gaps as integers. Here, the integer quan-

tifies the number of non-interacting amino acid residues

(Figure 2A). The combination of amino acid and gap encodings

is termed structural interaction motif (henceforth interaction motif

or simply, motif). Therefore, motifs describe the spatial conforma-

tion of the binding and can be used in addition to residue informa-

tion to characterize antibody-antigen binding. Our motif notation

for antibody-antigen interaction places the paratope-epitope

interface into a unified coordinate system that preserves the link

between paratope and epitope and enables computational trace-

ability of both continuous and discontinuous (structural) antibody-

antigen interaction across antibody-antigen complexes. Thus, the

motif definition now enables querying key parameters of anti-

body-antigen recognition: (1) motif sequence diversity, (2) struc-

tural diversity (motif angle and (dis)continuity), (3) co-occurrence
4 Cell Reports 34, 108856, March 16, 2021
across complexes, and (4) predictability and learnability of para-

tope-epitope interaction.

The combined set of paratope and epitope motifs was gener-

ally distinct from that found in non-immune PPI (Figure S5A). Par-

atope and epitope motif lengths varied across FR and CDR re-

gions but remained below a maximum (max) length of 10

(median length: 1–7; Figure 2B). On average, three to four motifs

were found per antibody heavy and light chain (Figure S4L).

The diversity of paratope and epitope interaction motifs
is restricted (compact)
Out of 1,594 and 398 unique paratope and epitope motifs, only

80 motifs overlapped (Figure 2C). Therefore, we asked how

much of the potential (observed + unobserved) paratope and

epitope motif diversity is covered by our dataset of 825 anti-

body-antigen structures? To answer this question, we used the

Chao1 estimator (Chao, 1984) (see STAR Methods) and found

that for paratopes, the set of unique motifs in our dataset
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covered about 50% (398) of the potential diversity of all para-

topes (estimated total: 737), whereas the set of unique epitope

motifs in our dataset covered 15% (1,594) of the total epitope di-

versity (10,507; Figure 2D). The estimated total size of the para-

tope motif space is one order of magnitude smaller than the

analytically derived theoretical size (z105; see Methods S1).

Of interest, the size of the potential epitope motif space is similar

to that of the PPI motif space (Figure S5H).

To summarize, the estimated potential motif space is smaller

(<104) than the total number of antibody sequences (>1014) (Bri-

ney et al., 2019; Elhanati et al., 2015) by at least 10 orders of

magnitude. Our dataset captures a substantial portion of the to-

tal motif space indicating the restriction of the paratope-epitope

interaction motif space.

Interaction motifs have a unique sequential amino acid
signature suggesting immunological function
Because structural interaction motifs retain association with their

underlying paratope and epitope sequences, we were able to

ask whether structural interaction motifs group sequences with

common sequence signatures. If so, it would suggest that struc-

tural interaction motifs bear distinct immunological and biochem-

ical function. To investigate the sequence dependencies within

selected multi-residue (length > 1) paratope and epitope interac-

tion motifs, we determined the 2-mer decomposition of the se-

quencesmapping to the fourmostsharedparatope/epitopemotifs

(see STAR Methods) and found that the sequential dependencies

indeed differed among paratope and epitope motifs, respectively

(Figures 2E–2G), and thus may have immunological function.

Non-immune PPI structural interaction motifs differed from both

paratope and epitope ones (Figures S1H, S1I, S7A, and S7B).

The structure of paratope and epitope motifs differs
across CDR and FR regions
To address the question whether paratope and epitope interac-

tion motifs differ structurally, we measured the ‘‘angle’’ of each

motif (see STAR Methods). In general, median epitope motif an-

gles were only maximally as high as paratope motif angles (Fig-

ure S6A). Paratope and epitope angles correlated moderately

positively in the majority of the regions (max rPearson,CDR-H1–3 =

0.57, max rSpearman, CDR-H1–3 = 0.55; Figure S6B). To further sub-

stantiate our structural motif analysis, we compared Ramachan-

dran plot statistics (distribution of backbone dihedral angles) be-

tween paratope, epitope, and PPImotifs (Figure S6C). In addition

to verifying that FR and CDR use different angles (Figure S6A),

we found that PPI mostly manifests as alpha helix, whereas an-

tibodies in antibody-antigen complexesmostlymanifest as beta-

strand/sheet, PII spiral, and delta turn, thus underlining the

uniqueness of immune protein interaction (Figure S6C).

Taken together, we showed paratope and epitope motifs vary

structurally across FR and CDRs and are structurally distinct

from PPI motifs and, thus, to a large extent are unique to anti-

body-antigen recognition.

Paratope motifs are shared across antibody-antigen
complexes
We quantified both the number of continuous and discontin-

uous motifs for each FR/CDR region (Figure 3A) and the num-
ber of complexes that share identical motifs (Figure 3B). We

found the following: (1) CDR-H3 is an obligate region for anti-

body-antigen interaction because the CDR-H3 is the only re-

gion that had interacting residues in each antibody-antigen

complex investigated; (2) paratope motifs are predominantly

continuous; and (3) continuous paratope motifs, more so than

discontinuous, are shared across antibody-antigen complexes;

epitope motifs exhibited substantially less sharing and were

more discontinuous. Specifically, we found that only 10 para-

tope motifs and 5 epitope motifs (Figures S4D, S4E, S4H,

and S4I) were present in at least 10% (or 82 in absolute

numbers) or more complexes. Importantly, shared paratope

interaction motifs were not specific to a given class of antigens

(Figure S4F), nor to a specific germline gene (Figure S4G), and

13 of the most shared interaction motifs were also found in HIV

broadly neutralizing antibodies (bNAbs) (Figures S4J and S4K),

underlining the generality and diversity restriction of the interac-

tion motifs investigated here.

More generally, 8% of all paratope motifs were shared across

at least 20 complexes, whereas that was the case for only 1% of

the epitopes (Figure 3C). Epitopes were similar in sharing

behavior to PPI motifs, with only 3% being shared across 20 or

more complexes (Figure S5P).

A selected number of paratope motifs show broad
polyreactivity toward mutually exclusive epitope motif
spaces demonstrating a priori predictability of antibody-
antigen binding
We next asked whether paratope and epitope motifs have

preferred motif partners, which would indicate a priori predict-

ability of paratope-epitope binding. To answer this question, we

constructed a paratope-epitope-motif network (a bipartite

graph) by connecting each epitope motif to its cognate para-

tope motif (Figure 4A). We termed such a network a reactivity

network. In this network, we found that the top 7 connected

motifs were paratope motifs (mostly continuous or with one

gap) that made up 17% of all connections in the network (Fig-

ures 4A and 4C). Together, these top 7 paratope motifs made

829 connections to predominantly different epitopes (Figure 4E,

inset), thereby collectively binding to z50% of all unique

epitope motifs (Figure 2D). Thus, although these paratope mo-

tifs showed broad polyreactivity, they bound to largely entirely

different epitope motif groups. We found that the degree distri-

bution of the paratope-epitope reactivity graph was power-law-

distributed and scale free (Figure 4A) (Clauset et al., 2009). To

exclude the possibility that the connectivity patterns observed

were simply due to the fact that there are more epitope motifs

than paratope motifs (Figure 2C; Figure S7E), we demonstrated

that random reactivity networks showed the following: (1) no

power law (p < 0.1); and (2) an increased overlap of bound part-

ner motifs, and thus significantly lower specificity (Figures 4B,

4D, and 4E). Finally, we found that non-immune protein-protein

reactivity networks differed from paratope-epitope ones (Fig-

ures S5I–S5M).

To summarize, the top-connected paratope motifs in the

reactivity network show polyreactivity toward distinct epitope

spaces that are non-overlapping (polyreactive specificity).

Most motifs, however, are oligoreactive and thus highly specific.
Cell Reports 34, 108856, March 16, 2021 5



Figure 3. Paratope interaction motifs show a higher extent of continuity and sharing across antibody-antigen complexes than epitope

interaction motifs

(A) Ratio of continuous (absence of non-interacting residues) and discontinuous (presence of at least one non-interacting residue/gap) paratope and epitope

interactionmotifs across antibody-antigen complexes. For example, for paratope CDR-H3, the pie chart signifies that inz50%of the complexes, CDR-H3motifs

are continuous and in 50% discontinuous. Gaps in pie charts indicate that for a given region not all structures showed interacting residues.

(B) Absolute number of antibody-antigen structures containing a given interaction motif by CDR/FR.

(C) Absolute and relative number of motifs found across at least 2–20 antibody-antigen complexes (x axis).
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The combined high specificity and distinctiveness of paratope-

epitope interaction indicates that paratope-epitope binding is a

priori predictable.

Quantification of machine learnability of paratope-
epitope interactions
The paratope-epitope reactivity map indicates a priori predict-

ability of antibody-antigen binding (Figure 4A). To quantify the

accuracy (learnability) with which one can predict (translate)

one paratope interaction motif (or sequence) into the cognate
6 Cell Reports 34, 108856, March 16, 2021
epitope interaction motif (or sequence) and vice versa, we

leveraged both shallow and deep learning (Figure 5, bottom

panel). We evaluated model performance by comparing (1)

the motif length and (2) edit distance (error) of the predictions

and the true paratope motifs or sequences (see STAR

Methods).

As the deep models scale with the complexity of the parame-

ters (hidden dimension and embedding dimension), we

observed an increasingly positive correlation between the

lengths of prediction and true motifs (sequences) (Figures S6D



Figure 4. The majority of paratope and epitope motifs are oligoreactive, while a small number of paratope motifs show broad polyreactivity

toward distinct epitope motif spaces

The reactivity network of paratope-epitope interaction motifs indicates a priori predictability of antibody-antigen binding.

(legend continued on next page)

Cell Reports 34, 108856, March 16, 2021 7

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
and S6E, rPearson 0.8–0.9). In contrast, models trained on ran-

domized paratope-epitope pairs failed to recover the correct

length, indicating that the length for the motif or sequence is pre-

dictable (Figure S6E).

For both shallow and deep learning models, the medians of

prediction error of interaction motif use cases ranging between

0.25 and 0.42 (accuracy 58%–75%) were substantially lower

than those of sequence 0.78–0.87 (accuracy 13%–22%) use

cases (Figure 5). These results indicate that the paired para-

tope-epitope interaction motif space reaches reasonable accu-

racy, whereas the sequence space remained challenging to pre-

dict. We observed similar trends— prediction accuracy at

interaction motif level is higher than at sequence level—when

examining PPI data (Figure S6F).

Given that structural interaction motifs represent one of the

layers of antibody-antigen binding, we askedwhether integrating

motif and sequence information improves sequence-based pre-

diction. Indeed, when combining structural motifs and se-

quences to an ‘‘aggregate,’’ the prediction accuracy of the

deep model, but not shallow models, improved by 2–7 percent-

age points as compared with the sequence-only use case (Fig-

ure 5). Thus, adding structural information improves the

sequence-based prediction accuracy of antibody-antigen bind-

ing, possibly because it removes interaction ambiguity from the

paratope-epitope reactivity space (Figures S7F and S7G).

DISCUSSION

Our results demonstrate the existence of learnable sequence

and structural rules in 3D antibody-antigen interaction. We per-

formed an unbiased search for binding fingerprints in a set of

825 curated antibody-antigen structures and discovered a

compact vocabulary of antibody-antigen interaction in the

form of structural interaction motifs. We showed that the motif

vocabulary is a valuable feature for the development of para-

tope-epitope prediction tools. These motifs are predominantly

simple (short and continuous), immunity-specific, and their

sequence diversity is restricted. We showed that each motif

has unique sequential dependencies suggesting that our motif

definition captures underlying immunological principles. To

provide quantitative robustness to our findings, our study con-

tains, to our knowledge, one of the most comprehensive statis-

tical evaluations of antibody-antigen and non-immune protein-

protein with respect to the following: (1) the distribution of

amino acid residues at the binding interface, (2) the extent of
(A) A bipartite reactivity network capturing paratope-epitope motif interaction wa

motif (undirected edge); given that paratope and epitopemotifs may occur more th

havemultiple network connections. Network verticeswere scaled by their number

visualized. The network degree distribution was tested to fit a power-law distributi

out. Inset shows a zoomed-in section of a paratope motif (blue) connecting to a

(B) To confirm that the reactivity network architecture observed in (A) was unlikely

paratope and epitope motif distributions (Figures 4D and 4E). Inset: the Spearm

networks is shown. For both networks, the respective node degree distribution is

was done as described in (A).

(C and D) Cumulative degree distributions of networks (A) and (B).

(E) Distribution of interaction partner overlap for networks (A) and (B). In brief, for ex

calculated. The statistical significance of the difference between overlap distribut

function of interaction partner overlap.
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binding interface (dis)continuity, (3) quantification of interaction

complex sequence similarity, (4) a range of structural definitions

of paratope and epitope interaction, and (5) the relationship be-

tween somatic hypermutation sites and paratope-epitope con-

tact residues (Stave and Lindpaintner, 2013). While one of the

main aims of this work was to advance our quantitative under-

standing of antibody-antibody recognition, the second main

aim was to develop computational approaches that may help

study antibody-antigen interaction in the years to come.

Indeed, future studies may investigate alternative motif defini-

tions (possibly identified by end-to-end machine learning) that

could unveil further structure/patterns in the antibody-antigen

interaction space. Finally, to our knowledge, similar work on

TCR-peptide interaction has not been performed yet.

Comparing motifs between TCR and antibody-antigen motifs

would shed light on mechanistic similarities and differences in

antibody and TCR antigen interaction (Antunes et al., 2018;

Bradley and Thomas, 2019; Dash et al., 2017; Glanville et al.,

2017; Gowthaman and Pierce, 2018; Hellman et al., 2019; Lan-

zarotti et al., 2018; Ostmeyer et al., 2019; Riley and Baker,

2018; Turner et al., 2006).

Antibody-antigen interaction operates via structural
interaction motifs
The discovery of shared interaction motifs crucially depended

on the FR/CDR-focused definition of paratope and epitope

(Figure 1; see STAR Methods) because these are the locales

of the fundamental binding units of antibody-antigen binding.

In the future, once more antibody-antigen structures become

available, one may attempt to search for motifs based on the

entire antibody and antigen. A given antibody VH (variable

heavy) and VL (variable light) has amedian of three to four motifs

(Figure S4L). Relatedly, Kunik and Ofran (2013) showed the six

ABRs (zCDR-H/L1–3) differed significantly in their amino acid

composition, and that each ABR tends to bind different types of

amino acid at the surface of proteins (Van Regenmortel, 2014).

Although we were able to confirm that paratope-epitope amino

acid level contact maps differ across CDR/FR regions (Fig-

ure S7), we found that paratope interaction motifs were shared

substantially across CDR/FR regions, suggesting that binding

spaces of CDR/FR regions are not as mutually exclusive as pre-

viously thought. Indeed, our reactivity network analysis sug-

gested that binding spaces are partitioned at the motif level

and not at the amino acid level (Figure 4; Figures S7E–S7G).

Specifically, structural interaction motifs encode geometric
s constructed by connecting each paratope motif to its corresponding epitope

an once across antibody-antigen structures, paratope and epitopemotifs may

of connections (degree). Only the largest connected portion of the network was

on (Clauset et al., 2009). A p value > 0.1means that a power law cannot be ruled

diverse set of epitope motifs colored in gray (polyreactivity).

to be observed by chance, we randomly sampled 100 times 1,000 motifs from

an correlation of node degree correlation of observed and randomly sampled

shown (for B, the standard error of the mean is also shown). The power-law fit

ample, for all paratopes in (A), the pairwise overlap of bound epitopemotifs was

ions from (A) and (B) was computed using the KS test. Inset: node degree as a



Figure 5. Quantification of machine learnability of paratope-epitope interactions at motif and sequence level
(Bottom) Schematic of the paratope-to-epitope and epitope-to-paratope prediction tasks (use cases). To quantify the learnability of antibody-antigen

interactions at motif and sequence levels, four distinct use cases were used: (1) interaction motif; (2) interaction motif with positional index; (3) sequence; and

finally, (4) motif and sequence aggregate (all use cases are explained with examples in STAR Methods). We leveraged both deep and shallow machine learning

approaches. (Top) The median prediction error was obtained by calculating the median Levenshtein distance between the output and the predicted output for

each use case across all parameters. The distance ranges from 0 (perfectly matching output-predicted-output, high prediction accuracy) to 1 (fully dissonant

output-predicted-output pairs, low prediction accuracy). Shown is the mean of the medians from the replicates of each use case. Use cases cover the bidi-

rectional prediction tasks (paratope to epitope, as well as epitope to paratope) of motif to motif, motif with position to motif with position, and finally amino acid

sequence to amino acid sequence. Baseline prediction accuracies (control) were calculated based on label-shuffled data where antibody and antigen-binding

partners were randomly shuffled (randomized pairs). Total unique pairs for motif, sequence, and aggregate levels are 2,847, 3,967, and 3,986, respectively. Error

bar: ±2 3 standard error
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information of the local structure and are therefore linked to the

angle of folding (Figures S6A and S6B). Thus, linking sequence

to motifs and motifs to binding in a two-step process may con-

nect, in the future, local folding to global specificity. Indeed, we

found that merging motif and sequence information increased

the prediction accuracy of paratope-epitope interaction (Fig-

ure 5). Interestingly, in HIV bNAbs (Figures S4J and S4K), the

same motifs as in non-bNAbs were used, underlining the gen-
erality of the motif vocabulary here discovered and character-

ized (Chuang et al., 2019).

Antibody-antigen recognition is overall oligoreactive
with islands of high polyreactivity: implications for
humoral specificity
We identified not only predefined dependencies within se-

quences mapping to paratope and epitope interaction motifs
Cell Reports 34, 108856, March 16, 2021 9
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but also higher-order dependencies among paratope and

epitope motifs. Specifically, we found that paratope-epitope

interaction is power-law distributed (Figure 4) with polyreactivity

of a few selected paratope motif ‘‘hubs’’ and general oligospeci-

ficity of the majority of paratope and epitope motifs. The highly

polyreactive paratope motifs were more continuous and con-

tacted mutually exclusive epitope space, indicating an overall

high degree of humoral specificity already on the motif level

and not only on the amino acid level as previously thought.

Humoral specificity describes the capacity of the antibody im-

mune response to selectively target a nearly infinite number of

antigens. Given the large number of potential antigens, it is

commonly thought that antibody-antigen interaction is very chal-

lenging to predict. But if one approaches the challenge of under-

standing antibody-antigen interaction from a motif perspective,

it breaks down the problem into a lower-dimensional task. It is

tempting to speculate as to the evolutionary advantage of short

motifs in antigen recognition (non-immune PPI has evolved sub-

stantially larger motifs; Figures S5B and S5C). Short motifs

decrease the potential escape space for antigens but also render

self- and non-self-recognition more difficult. It would be inter-

esting to investigate whether, for example, autoimmunity and in-

fections (bacterial, viral) occupy different motif spaces. So far,

however, we observed that paratope motifs were shared across

antigen classes (Figure S4F).

Predictability and learnability of the paratope-epitope
interface
Paratope-epitope prediction is a task known in the structural bio-

informatics field as binding site prediction and is typically formu-

lated as the problem of finding the set of residues (or patches) on

the protein surface likely to interact with other proteins (Akbar

and Helms, 2018; Akbar et al., 2017; Hwang et al., 2016; Jordan

et al., 2012; Northey et al., 2018; Porollo and Meller, 2007). This

problem can be formalized as a binary classification task in

which a model is trained to discriminate binders from non-

binders at residue or sequence level. That is, given a sequence

VGRAISPRAS, the model would assign a probability to each

amino acid signifying its likelihood to bind to a partner residue

(Pbind(V) = 0.3, Pbind(G) = 0.05, Pbind(R) = 0.7 etc.), or Pbind(V-

GRAISPRAS) = 0.6). Here, we went beyond a binary (binder or

non-binder) classification setting toward a more nuanced

multi-class setting. Specifically, we asked for a given paratope

motif, the corresponding epitope motif (multi-class setting),

instead of whether the motif binds or not (binary-class setting).

Prediction for the multi-class classification setting proved

reasonably successful at the motif level (Figure 5). Transitioning

into a higher-dimensional multi-class setting, such as the transi-

tion between the sequence and aggregate encodings, adversely

impacted our shallow model more so than the deep one, sug-

gesting that as the class diversity tends to infinity, the deep

model would increasingly outperform the shallow one.

More generally, a target-agnostic approach, such as Para-

tome (Kunik et al., 2012b), finds a set of regions from a structural

alignment of antibody-antigen complexes and uses it to locate

similar regions in new sequences. Antibody i-Patch (Krawczyk

et al., 2013) utilizes contact propensity data to score each amino

acid while at the same time leveraging information from neigh-
10 Cell Reports 34, 108856, March 16, 2021
boring residues (a patch of residues). To be applicable for anti-

body-antigen prediction, the original i-Patch (Hamer et al.,

2010) algorithm, however, would have to be adjusted with

respect to two central assumptions: (1) multiple sequence align-

ment (MSA) signifying evolutionary (sequence/structural) con-

servation in protein-interacting domains; and (2) protein-pro-

tein-derived amino acid propensity score, both of which are

less pertinent for antibody-antigen complexes as antibodies

(as does surviving antigens) constantly evolve obscuring many

forms of conservations, structural and sequence alike. Specif-

ically, CDRs in antibodies manifest as unstructured loops with

minimal structural conservation across antibodies, and amino

acid propensity differs between protein-protein and antibody-

antigen complexes. This combination compounds the

complexity in learning the rules that govern antibody-antigen

interaction and necessitates a unique approach separate from

the conventional approaches presently applied in the PPI field.

The motifs discovered here fill this missing gap by capturing

structural and sequence information in a single notation across

antibody-antigen complexes and projecting antibody-antigen

interaction onto substantially lower dimensions (102 paratope

and 103 epitope motifs), which allowed us to observe conserva-

tion from a motif’s perspective. For instance, we showed in Fig-

ures 3B and 3C and S4F–S4I that motifs are ‘‘conserved’’

(shared) across different antigen classes, V genes, and struc-

tures. Tools such as Antibody i-Patchmay, for instance, leverage

a motif-driven alignment in place of the missing MSA data

because of sequence diversity of antibody-antigen complexes.

Beyond target-agnostic approaches, accumulating evidence

has demonstrated the utility of integrating the information from

the interacting partner in improving state-of-the-art performance

(Ahmad andMizuguchi, 2011). Townshend et al. (2019) achieved

state-of-the-art performance for the prediction of PPI by training

a model that comprises two separate convolutional neural net-

works (one from each interacting partner) and concatenating

them to produce the final output. Similarly, Pittala and Bailey-

Kellogg (2019) used an attention layer on top of two separate

convolutional layers (one each for antibody and antigen) to pro-

duce superior predictions to target agnostic approaches, such

as DiscoTope and Antibody i-Patch (Andersen et al., 2006;

Krawczyk et al., 2013). Finally, Deac et al. (2019) eclipsed the

performance of the target-agnostic Parapred approach by build-

ing a model that cross-modally attends antigen residues (Liberis

et al., 2018). Although much more sophisticated in terms of

model complexity and architecture in addition to ‘‘target-

aware’’-ness, these models remain anchored to the problem of

delineating binders and non-binders (binary prediction) and

have yet to venture to a multi-class setting. We note as well

that antibody-epitope prediction is typically treated separately

(1) to predict residues or sequences in antibodies that bind to

epitopes (paratope prediction), and (2) to predict residues or se-

quences in antigens that bind to paratopes (epitope prediction).

In this dichotomy, paratope prediction typically fares several

folds better than epitope prediction (for context, a state-of-the-

art predictor from Pittala and Bailey-Kellogg (2019) yielded areas

under the precision-recall curve [AUC-PR] of 0.7 and 0.212 for

paratope and epitope prediction respectively). In contrast, we

observed a notably less dramatic difference at least at the motif
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level, where accuracy ranges from 0.63 to 0.72 and 0.58 to 0.75

for paratope and epitope prediction, respectively (Figure 5).

Thus, we speculate that ‘‘motif-awareness’’ may further extend

the performance of these approaches similar to the added

benefit of target-awareness earlier described and may bridge

the dichotomy between paratope and epitope prediction.

Given that there exist a few paratope motifs with broad

epitope motif reactivity, the motif-based prediction accuracy of

paratope-epitope interaction cannot reach, by definition, 100%

(as opposed to other potential paratope/epitope encodings)

(Figure 4; Figures S7E–S7G). However, because the epitope

reactivity of the polyreactive paratopes was mutually exclusive

(distinct), focusing prediction efforts on branches of the para-

tope-epitope reactivity network, as well as increasing the

amount of data to train and build the network, may improve the

performance of sequence-based paratope-epitope prediction

models, especially because we discovered the following: (1) mo-

tifs possess distinct sequential dependency signatures, and (2)

motifs aid the sequence-based prediction of paratope-epitope

pairing (sequence-motifs aggregates; Figure 5).

Implications for machine-learning-driven antibody,
epitope, and vaccine engineering
Monoclonal antibodies are of substantial importance in the treat-

ment of cancer and autoimmunity (Brown et al., 2019; Csepregi

et al., 2020; Ecker et al., 2015). Thus, their efficient discovery is of

particular interest. Given that our work is unbiased toward both

paratope and epitope analysis, it demonstrated the feasibility

of the reconstruction, via machine learning, of potential neo-epi-

topes for neo-epitope design or the discovery of neo-epitope-

specific antibodies. Our analyses suggest that the number of

antibody-binding motifs is relatively restricted (Figures 1 and

2). Monoclonal antibody discovery is predominantly performed

using synthetic antibody libraries. The number of developable

hits of such libraries may be increased by tuning sequence diver-

sity toward the interaction motifs (and their corresponding

sequential bias) discovered here (Amimeur et al., 2020; Chen

et al., 2020). Relatedly, engineering-driven computational opti-

mization of antibody-antigen binding, as well as docking algo-

rithms, might benefit from incorporating interaction-motif-based

heuristics (Baran et al., 2017; Krawczyk et al., 2013; Kuroda and

Gray, 2016; Mason et al., 2019; Sivasubramanian et al., 2009;

Weitzner and Gray, 2017). Specifically, if we assume that the

interaction motif sequential dependencies discovered here

were evolutionarily optimized, they may be used to substitute

for the lack of available MSAs that are used to calculate high-

propensity interacting residues in protein-protein docking

(Krawczyk et al., 2013). Furthermore, it will be of interest to inves-

tigate whether sequential dependencies are already predictive

by themselves as to the antigen targeted (more paratope-

epitope-paired data are needed for such investigations) (Mason

et al., 2019).

We found that contact residues and somatic hypermutation

are in fact correlated (Figure S2E). For antibody optimization,

this suggests that linking the antigen-contacting and somatically

hypermutated positions in a high-throughput fashion and pre-

dicting whether the paratope prior to SHM was already binding

or not may enable, in theory, the construction of a hierarchy of
evolutionary-driving SHM sites. Furthermore, it would be of inter-

est to investigate the extent to which somatic hypermutation pre-

serves binding motifs or, relatedly, how a reversal to germline

would change interaction motifs. The latter is a particularly

important question because there is likely an overrepresentation

of high-affinity antibodies in the dataset investigated here.

The antibodies studied here are diverse and can harbor specific

structural features, such as glycans, for binding envelope proteins

of HIV or influenza. Further, those antigens may also harbor gly-

cans depending on the mode of protein synthesis before crystal-

lization. Our dataset therefore inherently already contains the ef-

fect of post-translational modifications to antigen-antibody

binding. Interestingly, we did not find substantial differences in

the motif usage between bNAbs against viral glycoproteins, sup-

porting that the vocabulary of motifs is shared among antigens

with diverse structural features in the dataset. However, without

more abundant experimental 3D-antibody-antigen binding data,

we are unable to predict whether this holds true for proteins that

cannot be crystallized or for unstructured loops of antigens, which

are typically missing in structural databases.

In the future, it may also be of interest to correlate interaction

motifs with antibody developability parameters (Jain et al., 2017;

Lecerf et al., 2019; Mason et al., 2019; Raybould et al., 2019b).

Antibody developability depends on a multitude of parameters

that are calculated based on the entire antibody complex (Ander-

sen et al., 2011; Raybould et al., 2019b). Thus, all non-interacting

residues also contribute to antibody developability calculations.

Therefore, future studies will have to delineate to what extent

non-interacting residues correlate with specific interaction

motifs.
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R., Lemaitre, M., Malik, A., Barbié, V., and Chaume, D. (1999). IMGT, the inter-

national ImMunoGeneTics database. Nucleic Acids Res. 27, 209–212.

Liberis, E., Veli�ckovi�c, P., Sormanni, P., Vendruscolo, M., and Liò, P. (2018).
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Preprocessed datasets, code, and results figures are available at:

https://github.com/GreiffLab/manuscript_ab_epitope_interaction. The accession number for the unprocessed deep learning

models, checkpoints, and output files reported in this paper is [https://archive.sigma2.no]: https://doi.org/10.11582/2020.00060.
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METHOD DETAILS

A dataset of non-redundant and diverse 3D antibody-antigen complexes
A dataset of 866 antibody-antigen complexes in the format of Protein Data Bank (PDB) (Figure 1A) was obtained from the Antibody

Database (AbDb) (Berman et al., 2000; Ferdous and Martin, 2018) [download date 27 July 2019]. AbDb routinely crawls PDB to find

existing antibody-antigen structures and preprocesses them by (i) identifying the antibody (VH-VL, variable [V] heavy [H] and light [L]

chain domains) and the corresponding ligand, (ii) annotating the antibody variable region (Fv) by consulting the Summary of Antibody

Crystal Structure (SACS) database (Allcorn and Martin, 2002) and (iii) applying a standardized numbering scheme for the antibody

sequences. To obtain non-redundant structures, AbDb performs pairwise comparisons across the structures (both heavy and light

chains). Specifically, (i) PDB records with the type ATOMwere used to extract the amino acid sequence of an antibody, (ii) each anti-

body pair is compared with respect to residue position and amino acid, for example, if the residue position 42 is present in both an-

tibodies and the amino acid is different, then the two antibodies were regarded as non-redundant, and (iii) if there aremissing residues

in one antibody and not the other, these positions are ignored (we refer to the section ‘redundancy processing’ in the original paper for

more details: Ferdous and Martin, 2018). Structures comprising different amino acid residues in the same position are considered

non-redundant. From the initial dataset of 866 antibody-antigen complexes, we removed atoms labeled with PDB record type HE-

TATM (non-protein atoms serving as co-factors) and structures with a resolution larger than 4.0Å (44). The final curated dataset com-

prises 825 antibody-antigen (protein antigen only) complexes with a median resolution of 2.5A (Figure 1A). To gain statistical power,

we analyzedmouse and human antibody complexes as one entity. Mouse and human antibody-antigen complexes represent 90%of

the AbDb (Figure S1D) and we found large overlaps in paratope motif spaces used by mice and humans (Figures S1H, S1I, and S4C).

Additionally, it was recently reported that neither CDR/FR length nor the distribution of interface residues in human and murine an-

tibodies differs substantially (Collis et al., 2003; Henry and MacKenzie, 2018; Wang et al., 2018).

Annotations for 113 bNAbs were obtained from the database bNAber (Eroshkin et al., 2014). 70 of these antibodies were repre-

sented as 24 non-redundant (see above and the section ‘redundancy processing’ in the original AbDb paper for more details: Fer-

dous and Martin, 2018) complexes in AbDb and were included herein (Figures S4J and S4K). The remaining 43 were excluded

(38 without antigens and 5 because of unavailable structures).

Selection of antibody sequence numbering scheme
AbDb provides datasets with three numbering schemes: Kabat (Kabat et al., 1992), Chothia (Chothia and Lesk, 1987), and Martin

(Abhinandan and Martin, 2008). These numbering schemes partition the antibody heavy and light chains into framework FR: FR1,

FR2, FR3, and FR4; and complementary determining region (CDR): CDR1, CDR2, and CDR3. In the Kabat scheme, gaps foundwithin

the alignment are based on the variability of the aligned sequences. As more three-dimensional (3D) structural information became

available, Chothia and Lesk created a numbering scheme that takes spatial alignment into consideration. In particular, they corrected

the positioning of the first CDR in both heavy and light chains. Abhinandan and Martin further refined the Chothia numbering scheme

bymaking corrections, not only in the CDRs but also in the FRs. Here, we used theMartin numbering scheme to annotate the FRs and

CDRs of antibodies as it was previously determined to be suitable for structural and antibody engineering (Dondelinger et al., 2018). It

is also the most recent of the presently available numbering schemes. Table S1 summarizes the position of FR and CDR regions and

the position of insertions according to the Martin numbering scheme. In the Martin numbering scheme, the CDR-H3 region excludes

the V-gene germline part of the antibody gene (typically identified by the amino acid triplet CAR), as well as parts of the J-gene germ-

line part (typically identified by ‘‘W’’) as shown in Table S2.

Identification of interacting residues in antibody-antigen complexes
To identify interactions between amino acid residues in antibody-antigen complexes, a distance cutoff was set. Distance cutoffs be-

tween 4–6A are routinely used when examining interactions between proteins or protein-ligand pairs as most noncovalent atomic in-

teractions are short-range (e.g., hydrogen bonds and Van der Waals interactions range from 3–4A; (Esmaielbeiki et al., 2016; Lodish

et al., 2000). For instance, a recent study on contact-based protein structure networks by Viloria and colleagues found that a distance

cutoff of < 5A (heavy atoms) is most sensitive to changes in residue interactions and variables such as force fields (Salamanca Viloria

et al., 2017). Therefore, we defined interacting paratope-epitope residues by a distance cutoff of < 5A between heavy atoms. In other

words, amino acid residues are considered to be interacting if they have heavy atoms with a distance < 5A from each other (Figure 1B).

We used the function NeighborSearch of the module Bio.PDB in Biopython (Cock et al., 2009) to identify neighboring amino acid res-

idues within the distance cutoff. For completeness, we evaluated the variation of the total number of interacting residues, their distri-

bution across FR and CDR regions as well as the overlap of interaction motifs (for explanation see below) for the three commonly

used distance cutoffs < 4A, < 5A and < 6A in Figures S3A and S3D. We confirmed that the overall trends in per-region residue distri-

bution, overlap between paratope and epitope interactionmotifs (Figures S3A and S3B), and (dis)continuity (Figures S3C and S3D) hold

across the three distance cutoffs tested indicating that our definition of interacting residues is appropriate and robust.

Definition of paratope, epitope, and paratope-epitope structural interaction motifs
(i) A paratope is defined as the set of interacting amino acid residueswithin a particular FR or CDR region of an antibody (e.g., residues

colored in salmon in Figure 1B). (ii) An epitope is defined as the set of antigen amino acid residues that interact with a paratope.
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Epitopes are annotated according to the FR or CDR regions of the corresponding paratopes. (iii) The length of a paratope or epitope is

defined as the number of amino acid residues constituting the paratope or epitope (see paratope/epitope length in Figure 1D). (iv) A

gap is defined as the number of non-interacting residues separating two paratope or epitope residues (Figures 1B, 1D, and 2A). (v) A

paratope or epitope structural interaction motif is composed of interacting paratope and epitope amino acid residues as well as non-

interacting ones (gap). Interacting residues are encoded with the letter X and non-interacting residues are encoded with an integer

quantifying gap size (number of non-interacting residues, Figure 2A). For example, the string X1X encodes a paratope or epitope

interaction motif of two interacting amino acid residues (X,X) separated by one non-interacting residue (1). The number of interaction

motifs in antibodies, motif continuity/sharing, correlation between paratope-epitope motifs lengths is shown in Figures S4L–S4Q.

Definition of interaction motif angle
The angle of an interaction motif was computed by defining two vectors spanning the midpoint of a motif and its start and end po-

sitions (see inset in Figure S6A for illustration), in a similar fashion to AngleBetweenHelices, a Pymol module for calculating the angle

between helices (Schrödinger, 2015). Larger angles would indicate that the structure of the interaction motif is more extended

whereas small angles indicate that the interactionmotif would tend to form a loop. Protein 3D structures were rendered and visualized

in Pymol 2.1.0 (Schrödinger, 2015).

Diversity analysis of interaction motifs
To estimate the potential (observed + unobserved) paratope or epitope sequence diversity, we used the Chao1 estimator (Chao,

1984, 1987; Chao and Chiu, 2016), a non-parametric estimator of the lower bound of species richness [number of unique sequence

motifs], as implemented in the R package Fossil 0.3.7 (Chao1) (Vavrek, 2011).

Paratope-epitope amino acid contact map
Paratope(P)-epitope(E) amino acid contact maps were obtained by computing the log odds ratio, LxðPi;EjÞ=
log2

�
PðPi;EjÞ�PðPiÞPðEjÞ

�
, of the observed occurrence of each amino acid pair over the corresponding expected frequency as

described in (Kunik and Ofran, 2013); where i is the paratope amino acid, j is the epitope amino acid, and x is the region (FR/CDR

in antibody-antigen complexes). Analogously, protein-protein amino acid contact maps were computed for inter- and intradomain

in non-immune protein-protein complexes (PPI).

Construction of bipartite paratope-epitope and PPI reactivity networks at motif and sequence level
A paratope-epitope motif interaction network (reactivity network) was constructed by connecting each paratope motif to its corre-

sponding epitope motif (undirected edge). The degree distribution, the distribution of the number of connections (edges) to a

node (degree), of the resulting interaction network was tested to fit a power-law distribution by calculating a goodness-of-fit value

with bootstrapping using the poweRlaw R 0.70.2 package (Gillespie, 2015) as described by Clauset and colleagues (Clauset

et al., 2009). Here, a network whose degree distribution fits a power-law distribution (exponent between 2 and 3) is defined as

scale-free (Broido and Clauset, 2019). Networks and the corresponding visualizations were constructed using the network analysis

and visualization suite Cytoscape 3.7.1 (Shannon et al., 2003). Reactivity networks for sequence and aggregate encoding, see ma-

chine learning use cases (encoding) below, aswell as PPI reactivity networks, were constructed as above described and are shown in

Figures S5 and S7, respectively.

Analysis of sequential dependencies in interaction motifs
To quantify the sequential dependencies in paratope and epitope interaction motifs, we determined for each multi-residue motif, the

2-mer decomposition of each paratope/epitope sequence (bidirectional sliding window) of the ensemble of paratope/epitope se-

quences mapping to the respective motif (non-interacting residues were not taken into account). For each motif, these sequential

dependencies were visualized as Chord diagrams where the 20 amino acids form the segments in a track (the outermost ring)

and the links indicate the frequency with which a 2-mer sequential dependency occurred (sequential dependency). Chord diagrams

were constructed using Circlize 0.4.8 (Gu et al., 2014). Hierarchical clustering of the motifs’ sequential dependencies was performed

using the R package pheatmap 1.0.12 (Kolde, 2019), distances between motifs were quantified by Euclidean distance or correlation

and agglomeration was carried out using the complete-linkage method.

Dataset of protein-protein interaction and definition of protein-protein interaction motifs
A dataset of protein-protein interactions (PPI) was sourced from 3did, a catalog of three-dimensional structure domain-based inter-

actions (Stein et al., 2005). The database (i) collects high-resolution 3D-structures from PDB (version 2019_1) (Berman et al., 2000)

and (ii) annotates the structures according to the protein domain definitions provided by Pfam (version 32.0, Table S3 summarizes the

top 10 protein domains in the latest version 3did) (El-Gebali et al., 2019). Interactions between domains originating from different

chains were annotated as interdomain whereas interactions originating from the same chain as intradomain. Structures with Pfam

domain description (i) immunoglobulin and (ii) Ig-like were excluded (as they overlap with structures from AbDb). As of 2 July
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2019, 3did comprised a total of 18,599,078 contact residue pairs (100,888 protein structures), which is three orders of magnitude

larger than the number of antibody-antigen contact residues (18,630 residue pairs, Figure 1C). Protein-protein interaction motifs

were constructed for each domain pair analogously to paratope-epitope interaction motifs (see the previous section). Motifs with

gap lengths larger than seven were excluded from the analysis (to match the largest gap size found in paratopes, Figure 1) as

well as complexes larger than 300 residues long. The final non-immune PPI dataset comprises 9621 interdomain and 1043 intrado-

main complexes for a total of 299,141 contact residues (Figure S5).

Quantification of somatic hypermutation on antibody amino acid sequences
To quantify somatically hypermutated (SHM) amino acid residues in the dataset, we annotated the sequenceswith the corresponding

species (here shown only human andmouse) and aligned the sequences against germline immunoglobulin V, D, and J genes sourced

from IMGT.

The IMGT database (Lefranc et al., 1999) includes 570 (578), 34 (39), and 32 (26) human (mouse) germline immunoglobulin V, D, and

J genes/alleles, respectively (accession date: Feb 2019). We translated the nucleotide sequences of V and J genes according to their

ORFs (open reading frame). As D genes can be truncated during the recombination process, we used amino acid sequences corre-

sponding to all three ORFs (excluding non-productive translations). To compute alignments, we used the following scoring scheme:

match reward = 2,mismatch penalty = –1, gap opening penalty = –5, and gap extension penalty = –2. For each sequence, we selected

germline V, D (if the sequence corresponds to the heavy chain), and J geneswith the highest alignment scores. SHMswere defined as

differences in the alignment between the antibody sequence and the selected germline genes. Exonucleolytic removals during V(D)J

recombination lead to deterioration of the alignment quality at the end (start) of V (J) genes. To reduce their impact on SHM quanti-

fication, we discarded SHMs corresponding to three amino acid residues at the end (start) positions of V (J) genes in the alignment as

it was shown previously that three amino acids (up to 9 nt) correspond to the average lengths of exonucleolytic removals in V and J

genes (Ralph andMatsen IV, 2016). To reduce the impact of exonucleolytic removals in D genes, we considered only SHMs emerging

between the first and the last matches in the alignments. Figure S2E shows inferred SHMs localize around CDR1s and CDR2s and

thus partially correlate with the paratopes positions centered in all three CDRs. We found only few SHMs in the CDR3s (Figure S2E).

We caution that thismay be a reflection of the limitation of our SHMquantification approach and not necessarily a biological feature of

the immunoglobulin sequences here studied.

Ramachandran plot analysis
Ramachandran angles (Phi-Psi pairs) were extracted from PDB files using the package PDB in Biopython 1.74 (Cock et al.,

2009). The package pdb-tools 2.0.0 was used to preprocess PDB files and extract the chains/regions of interest (Rodrigues

et al., 2018). We examined six different groups: (i) residues in the CDR regions of the heavy or light chains of antibody structures

(CDR); (ii) residues in the framework regions of heavy and light chains of antibody structures (FR); (iii) residues binding to

the antigen (paratope), from the FR and CDR regions i.e., only the ‘X’ in the motifs (AbDb interacting residues); (iv) binding res-

idues from the PPI dataset in inter-and intra-chain interactions (PPI interacting residues); (v) residues that belong to a motif

(including gaps) in AbDb antibody structures, for instance, X-X–X leads to 6 angles (AbDb motifs), and (vi) residues that belong

to a motif in intra- or inter-chain interactions in the PPI dataset (PPI motifs). Finally, following Hollingsworth and colleagues (Hol-

lingsworth et al., 2012), we classified the Phi-Psi pairs into groups of secondary structure types (also known as Ramachandran

regions).

Machine-learning prediction of paratope-epitope and PPI at interaction motif, sequence and aggregate level
To quantify the extent to which paratope-epitope/non-immune protein-protein interaction is learnable with the available dataset, we

leveraged both deep and shallow learning approaches using several encodings of the input (see below). The shallow learning

approach directly predicts the cognate (epi/para)-tope (or PPI binding partner) as an atomic unit. In contrast, the deep learning

method generates the cognate (epi/para)-tope (or PPI binding partner) character by character (more details below). It thus represents

a generative approach to prediction, although in a different sense than the typical meaning of generative machine learning (learning a

joint distribution of independent and dependent variables) (Goodfellow et al., 2016).

Use cases (encoding):
Four levels of encoding in both directions, namely paratope to epitope and epitope to paratope (or PPI binding partner to PPI binding

partner), were used. (i) Structural motif level: a paratope structural motif XXX interacting with an epitope motif X2X yields an input-

output pair XXX–X2X. (ii) Position-augmented structural motif level: a paratope structural motif XXX interacting with an epitope motif

X2X yields an input-output pair X1X2X3–X122X3, the positions index each character in the sequence consecutively. (iii) Sequence level:

a paratope sequence NMA interacting with an epitope sequence RA yields an input-output pair NMA–RA. (iv) Finally, an aggregate

representation that simultaneously takes into account amino acid information and motif by replacing the abstraction character ‘X’

with the corresponding residue: a paratope-epitope interaction defined by the paratope sequence GR and motif X1X together

with the epitope sequence LLW andmotif XX1X yields an input-output pair G-R–LL-W. The antibody-antigen (PPI) datasets comprise

a total of 5,327 (25,921) input-output pairs.
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Deep learning
We leveraged a model based on Neural Machine Translation (Luong et al., 2015) to learn an epitope from (to) a paratope at motif,

sequence and aggregate levels (same for PPI but instead of paratope/epitope, respective PPI binding partners). Specifically, pairs

of input-output sequences were translated via a combination of two components: encoder and decoder with gated recurrent units

(GRU, see Figures 5, bottom panel, and S8). During the decoding phase via an attention layer, a context vector is derived to capture

relevant input-side information necessary for the prediction of an output. Utilizing the context vector, the decoder part of our deep

model generates each paratope or epitope motif/sequence character by character. For the translation task, we abstracted the gaps

within a motif by replacing them with dashes, for example, all motifs of the form XiX (where i is any integer) were encoded simply as

X-X. The dataset was split into 80% training and 20% test set. The numerical representation of the input pairs was learned by vector

embedding. Pairwise parameter combination: (i) embedding dimension (1, 21, 22,..., 210) and (ii) number of units (hidden dimension) (1,

21, 22,..., 210) was used to parameterize themodels. Here, the embedding dimension is the length of the vector representing the input

whereas the number of units is the number of cells in the GRU otherwise known as the length of the hidden dimension. The training

procedure was carried out for 20 epochs with Adaptive Moment Estimation (Adam) optimizer (Kingma and Ba, 2014) and was repli-

cated ten times. Each replicate comprises 121 models for a total of 1,210 models (1213 10, see workflow). The model from the last

epoch of each replicate was used to generate predictions on the test dataset.

Shallow learning
The shallow model takes into account the conditional probability of the output with respect to the input and a prior corresponding to

the output with the highest marginal probability (the most frequent class).

Evaluation
Discrepancy (error) between predictions and the true motifs (sequences) was determined by the normalized Levenshtein distance,

LDprediction vs truth
�
ðmaxðlengthðpredictionÞ; lengthðtruthÞÞÞ, between the predicted motifs (sequences) and true motifs (sequences).

Baseline prediction accuracies were calculated based on label-shuffled data where antibody and antigen-binding (or PPI) partners

were randomly shuffled. To ensure robustness when evaluating the deep models, instead of showing the error obtained from the

‘‘best model’’ in each replicate, we showed the mean of median error across all replicates and pairwise parameter combinations.

Ratios of training and test datasets, as well as error computation for the shallow model, were identical to the above-described

computation for deep models except for input motifs that were not present in the training dataset where the error was set to 1

(maximum error).

Deep learning models were constructed in TensorFlow 1.13.1 (Abadi et al., 2015) with Keras 2.2.4-tf (Chollet, 2015) in Python 3.6.4

(Van Rossum and Drake, 1995), while the statistical (shallow) model was constructed using pandas 0.25.1 (McKinney, 2010). Com-

putations for deep models were performed on the high-performance computing cluster Fram (Norwegian e-infrastructure for

Research and Education https://sigma2.no/fram).

Graphics
All non-network graphics were generated using the statistical programming environment R 3.5.2 (R Core Team, 2018) with the

grammar of graphics R package ggplot2 3.1.0 (Wickham, 2016), the R package VennDiagram 6.20 (Chen, 2018), and the ggplot2

theme themeakbar 0.1.2 (Akbar, 2019). Figures were organized and schematics were designed using Adobe Illustrator CC 2019.

QUANTIFICATION AND STATISTICAL ANALYSIS

All tests for statistical significance were performed using R 3.5.2 (R Core Team, 2018). Statistical difference between distributions

was computed using the Kolmogorov-Smirnov (KS) test. Details are described in the Figure Legends and method details.
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