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ABSTRACT: In a classical compression or tensile test using a Hopkinson bar, the stress-strain relation is ob-
tained via the strain measurement on the bars. From the signals on the input and output bar the deformation 
and the stress in the specimen are calculated. In the case of spall experiments, the output bar vanishes and 
well-established methods cannot be applied. For this reason Schuler et al. 2006 developed a method for the 
measurement of the tensile strength and fracture energy in a spall experiment. The method is specified and 
analyzed via numerical simulations within this paper.   

1 INTRODUCTION 

For the simulation of dynamic processes on concrete 
structures such as explosions, impacts or penetra-
tions, dynamic material properties are inevitable. 
The dependence of the strength increase in compres-
sion and tension has meanwhile been well-
established. A couple of investigations under high 
strain rate tensile loading have been performed by 
Klepaczco et al. 2001 and Schuler et al. 2006. An 
overview of the results of different investigations is 
given in Figure 1. Dynamic investigations to the 
fracture energy are seldom found in the literature. 
Wehrheijm 1992 and Schuler et al. 2006 are two ex-
ceptions. In Figure 2 the results of their investiga-
tions are shown.  

To achieve strain rates higher than 10/s, spall ex-
periments are most frequently used. However they 
have the disadvantage that the force-deformation re-
lation cannot be measured directly. There is a free 
end on one side of the specimen. For that reason 
Schuler et al. 2006 developed a method for deter-
mining the tensile strength and fracture energy in a 
spall experiment. In the first part of this paper the 
method is described briefly. In the second part, nu-
merical simulations are performed to evaluate this 
method.  
 

 
 
Figure 1: Dynamic tensile strength / static tensile strength 
(DIF) in dependence of the strain rate. 

 

 
 
Figure 2: Dynamic fracture energy / static fracture energy 
(DIF) in dependence of the crack opening velocity. 



2 EXPERIMENTAL METHOD 

2.1 Tensile strength – plain specimen 
In a spall experiment using a Hopkinson bar a pro-
jectile is shot on the incident bar. This causes an 
elastic wave in the incident bar that propagates to-
wards the specimen. The main part of the wave is 
transmitted into the specimen. At the free end of the 
specimen the wave reflects and fracture occurs. Fig-
ure 3 shows the process of the wave propagation and 
reflection in a spall experiment.  
 

 
Figure 3: Wave propagation and reflection in a spall experi-
ment using a Hopkinson bar. 
 
From the measured velocity at the rear side of the 
specimen, the tensile strength is obtained. According 
to equation 1, the tensile strength ft is calculated 
from the pull-back velocity Δupb (cp. Figure 4), the 
wave propagation velocity C and the density ρ. This 
method is known from plate impact experiments and 
adapted to the Hopkinson bar approach. The longi-
tudinal wave speed for a one dimensional strain state 
(plate impact) is substituted by the speed for one 
dimensional stress state (Hopkinson bar). The appli-
cability of this adjustment is investigated in section 
3.3 via numerical simulations. 

 

 
 
Figure 4: Free surface velocity at the free end of the specimen 
and pull-back velocity Δupb for the determination of the tensile 
strength.  
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2.2 Fracture energy – notched specimen 
Under the assumption of a 1D stress state and elastic 
material behavior, the reflection of the wave at the 
free end of the specimen can be calculated analyti-
cally. This is done by setting a mirrored copy at the 
end of the specimen which is propagating contrary 
to the original wave (cp. Figure 5). The addition of 
the imaginary copy with the real wave yields to the 
shape of the stress σ(x,t) and velocity v(x,t) during 
reflection (cp. Figure 6 and Figure 7). In the case of 
the stress the sign in the copy has to be changed to 
minus (-). For the particle velocity the incident and 
reflected waves have the same sign (+). The corre-
sponding formulas are given in equations 2 and 3.  

 

 

imaginary copies 

Figure 5: Mirrored copy of the wave (imaginary) for the calcu-
lation of the stress and particle velocity during reflection.  
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During the reflection the compressive stress de-
creases to zero and the tensile stress increases until 
tensile strength is reached. The phase of the tensile 
stress increase is pictured in figure 6. The corre-
sponding particle velocity is given in Figure 7.    

 



 
 
Figure 6: Tensile stress along the axis of the specimen in time 
steps of two μs. 

 
 

 
 
 

Figure 7: Particle velocity along the axis of the specimen in 
time steps of two μs. 

 

       
 

Figure 8: Cracked specimen at the notch and resulting frag-
ments. 
 
At the position where maximum stress occurs (15 
cm form the left) a notch is positioned. After the ten-
sile strength is reached, the crack opening process 
starts at that notch. During this process energy dissi-
pates (fracture energy Gf) which changes the veloc-
ity of the two fragments. The left fragment is accel-
erated and the right one is decelerated. This is shown 

in Figure 7 where the mean fragment velocities be-
fore and after cracking are shown. The velocities of 
the fragments “before cracking” are the mean values 
of analytical calculation in the corresponding sec-
tion. The velocities “after cracking” are measured 
via a high-speed camera. From these velocity 
changes the fracture energy over the whole crack 
opening process can be calculated according to 
equation 4. (F = force; δ = crack opening, I = im-
pulse, t = time, m = mass, ΔV and according to 
figure 7)  
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3 NUMERICAL ANALYSIS 

3.1 Geometrical model  
The Hopkinson bar and the specimen have a diameter of 
75 mm. The length of the specimen is 250 mm. The 
numerical analysis is performed via an axial symmetric 
calculation with a coarse and a fine discretization. Figure 
9 shows the geometrical model of the spall experiment.  

 

coarse:  20×100 elements  
fine:      40×200 elementsstrain gage

input bar specimen 

acceleration gage 
Boundary condition: Vxx(t) 

 
 

Figure 9:  Geometrical model of the spall experiment using a 
Hopkinson bar. 

 
Instead of simulating the impact of the projectile, a 
boundary condition is set in the incident bar. The 
measured signal from the strain gage is applied as a 
velocity boundary: ( ) (tct )xxxx ε⋅=v . The investiga-
tion comprises plain specimens for the measurement 
of the tensile strength and notched specimens for the 
measurement of the fracture energy.  

left fragment right fragment 

3.2 Physical model 

The bar consists of aluminum. The material is 
described with an elastic material description. This 
is sufficient because the applied stress does not 
reach the yield strength. The used elastic constants 
are: Young’s modulus: E = 72.7 GPa, Poison Ratio: 
ν = 0.34. The density is ρ = 2720 kg/m3. The same is 
the case for the behavior of concrete under 
compression. The wave propagation causes elastic 
deformation only. The used constants in the model 
are: E = 40.0 GPa and ν = 0.2. The density is ρ = 



2320 kg/m3. The behavior under tension is described 
with a fracture energy based model where elastic 
behavior is assumed until the tensile strength is 
reached. For the plain specimen the tensile strength 
is ft = 12.5 MPa. The fracture energy which is 
important for the notched specimen is set to Gf = 
380 J/m2. This is the mean value of the measured 
fracture energy (cp. Figure 2 with the static fracture 
energy of 125 J/m2).         

3.3 Tensile strength – plain specimen  

The tensile strength is measured from the pull-back 
velocity, as it is explained in section 2.1. In the 
simulation this tensile strength is used and the pull-
back velocity is compared to the experiment. As 
Figure 10 shows, the numerical analyzes yield 
nearly the same pull-back velocity. This show that 
the proposed method is appropriate and results with 
a high accuracy can be achieved. The adjustment 
from planar plate experiment to the Hopkinson bar 
experiment is valid! 
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Figure 10: Measured free surface velocity in comparison to the 
numerical results. 
 
An additional point of interest was the fragmentation 
of the specimen. Can fragment sizes be calculated? 
As figure 11 shows, they can. The damage zones 
from the simulation are at the position where the 
specimen was broken. The first breach arises at the 
side near the free end. This is in accordance with the 
stress development shown in figure 7. The second 
breach near the incident bar follows later. This is the 
case for plane specimens when the specimens are 
glued to the incident bar, which was done for the 
measurement of the tensile strength. 
 

         0 μs 

    240 μs 

     720 μs 
 

              
 
  

primary crack 

 
Figure 11:  Development of the fracture process in the 
specimen and fragments in the experiment.   

3.4 Fracture energy – notched specimen  

For the determination of the fracture energy the 
specimens were only laid in contact to the incident 
bar and a notch was cut with a depth of 5 mm. This 
notch disturbs the propagation of the pressure wave. 
As Figure 12 shows, a stress concentration emerges 
at the notch. But the stress does not exceed the 
elastic limit and no significant damage occurs during 
the compressive phase. This is a precondition for a 
spall experiment and is fulfilled. Approximately 40 
μs later the tensile stress has reached the strength 
and the crack opening starts at the notch. The crack 
propagates towards the center and a release wave 
follows this propagation (cp. Figure 13). During this 
time the left fragment is accelerated and the right 
fragment is decelerated. Figure 14 shows the 
fragment velocities as a function of time calculated 
via the numerical simulation. As explained in section 
2.2, the fracture energy is determined from the 
fragment velocities at the time of crack initiation and 
after the crack is completely opened. Using the time 
when the crack opening starts at the notch, once 
obtain with the analytical method a fracture energy 
of Gf = 416 J/m2. Using the time when the crack 
opening start in the center, leads to Gf = 244 J/m2. 
The time between initiation at the notch and the 
center is approximately 6 μs. In the analytical 
calculation a point of time in between this phase is 
used which leads to Gf = 380 J/m2. This shows that 
using a notch transfers the one dimensional problem 
to a three dimensional problem which goes along 
with a few inaccuracies. However, the inaccuracies 
are in a limited range, which still allow a clear 
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statement. The investigated dynamic fracture energy 
is about two to three times the static fracture energy  
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Figure 12:  Stress concentration around the notch during the 
compressive phase; lower figure: stress TXX at a radius of 15 
mm and 30 mm.  
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Figure 13:  Stress distribution in the specimen during crack 
opening (propagation of the crack from the notch to the 
center). 
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Figure 14:  Fragment velocity as a function of time.   

4 CONCLUSION 

For the measurement of the tensile strength the 
method used for planar impact experiments is 
adapted to a Hopkinson Bar spall experiment. The 
strength is calculated from the pull-back velocity. 
The numerical analyzes show that with this method 
the tensile strength can be calculated very precisely. 
Using the measured tensile strength in the numerical 
model leads to nearly the same pull-back velocity as 
in the experiment. 

The measurement of the fracture energy is 
difficult and there exist a few inaccuracies caused by 
the notch. During the compressive phase a stress 
concentration arises around the notch. But the stress 
has an extend which does not cause any damage to 
the specimen. This is a requirement for spall 
experiments and is fulfilled. During the tensile phase 
the assumption of an instantaneous crack initiation 
over the whole cross section is not correct. The 
crack propagates from the notch to the center. 
Depending on which initiation time is used, different 
fracture energies are calculated. Using the initiation 
time at the notch, leads to a dynamic increase factor 
(DIF) of Gf,dyn / Gf,stat = 3.33, using the initiation 
time in the center Gf,dyn / Gf,stat = 1.95. The factor in 
the experiment was 3.0. It is difficult to calculate the 
fracture energy in a spall experiment. However the 
imprecision of the method is in a range which allows 
a clear statement: The dynamic fracture energy at 
high strain rates is two to three times the static 
fracture energy. 
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