
32 IMVS Fokus Report 2014

Smartphones have evolved at such a rapid pace
that they are capable of rivalling basic desktop
computers regarding computational power. This
trend greatly stimulates the development of mo-
bile software, which in return promotes smart-
phone sales to an extent that they surpass PC sales
[1]. However, battery technology has not caught up
with the advancements in chip making. Dual-core
CPUs are common amongst smartphones and the
additional hardware packed into smartphones
such as GPS, Wi-Fi, 3G and 4G radios all take its
toll on the battery. A regular overnight recharge
of the smartphone has become the norm due to the
limited capacity of the batteries. Slow advance-
ments in increasing the capacity combined with
more powerful hardware can severely affect the
battery efficiency. The applications running on
a smartphone, which make extensive use of the
hardware, are therefore at fault for the dimin-
ishing battery efficiency. In order to reduce the
strain applications put on the hardware, develop-
ers need to understand the inherent restrictions
of a mobile environment and the implications it
has on their applications.

Battery Drain
In particular, applications using hardware fea-
tures such as the motion sensors as well as the
built-in flash storage significantly drain the
battery. When an application requests access to
the motion sensors it does so by using the sensor
framework to subscribe to one of the sensors. In
return, the sensor continuously publishes raw
sensor data to the application, which keeps the
CPU busy and prevents it from entering a deep
sleep state. Writing the acquired raw data to the
built-in storage leads to the effect of write ampli-
fication where more data needs to be written into
the flash memory than actually specified due to
the limited write capabilities of flash.

Since the use of the motion sensors is the un-
derlying cause of the battery drain, on Android
platforms a new batch-mode for listening to sen-
sors data is introduced with version 4.4. It allows
sensors to delay the reporting of new data to the
application. The CPU is kept asleep for longer pe-
riods of time, which positively affects the battery
efficiency.

A similar batch-oriented approach can also
be applied to reduce the occurrence of write am-
plification. Writing a single record to a Content
Provider in Android can trigger multiple writes
on the flash storage that increase the power con-
sumption. Instead of using one database trans-
action for writing each record, multiple records
can be combined to a single transaction elimi-
nating the transactional overhead. Storing data
in larger junks less often compared to smaller
ones more often improves the battery efficiency
since the additional write operation necessary are
kept at a minimum. As shown later in this article
the GreenDAO framework supports this strategy
when writing multiple records into a database.

Another aspect that has not been mentioned
yet, but greatly influences the battery efficiency
as well, is the wireless radio. Sending data to the
Internet over UMTS consumes the most amount
of power compared to other components as shown
in Table 1. Applications that run services in the
background, which access the Internet, keep the
wireless radio awake for longer periods of time.
Furthermore, the state machine of the wireless
radio negatively amplifies the wake lock on the ra-
dio. When an application finishes a transmission
the radio stays active for another 5 seconds be-
fore transitioning into a lower power state mode
because re-activating the radio is bound to a de-
lay. After another 12 seconds without any trans-
mission the radio goes into a deep sleep state [2].
On the assumption that typically multiple appli-
cations are running in the background the radio

Android Best Practices to Improve
Battery Efficiency

Multi-core CPUs, motion sensors and multiple wireless radios all draw a significant amount of power
which make a regular battery recharge a necessity. Applications, which extensively use the available
hardware, reduce the battery runtime severely. Continuous motion sensor recording excessively stress
a smartphone’s CPU preventing it from entering a deep sleep state. Android 4.4 introduces a new batch-
mode for sensors data to keep the CPU asleep for longer periods of time by delaying the reporting of new
data from the sensors. The same technique is applied when writing to flash memory. When using a con-
tent provider to store data write amplification occurs, which affects writing performance negatively. The
longer write times due to the reduced writing speed decrease the battery efficiency even more. A similar
batch-oriented strategy reduces the occurrence of write amplification. In return, the reduced writing time
improves the battery efficiency.

Chris Yereaztian, Jürg Luthiger | juerg.luthiger@fhnw.ch

33IMVS Fokus Report 2014

is left active. Since not all applications transfer
data to the Internet at the exact same moment in
time the radio never enters the deep sleep state
and therefore drains the battery.

In this article we discuss in more detail the
battery drain caused by motions sensors and
flash storage. The effects of wireless radio are
omitted since the complexity of the interaction
between the radio and the software legitimates
its own analysis.

Sensor Batching
The built-in motion sensors in mobile phones such
as the Nexus 4 and 5 draw a significant amount
of power when the sensors are actively running,
about half as much as the wireless radio (Table
1). The sensor framework provided by Android is
built upon four distinctive classes and interfaces.

The SensorManager provides access to the sensor
services. It contains methods for directly query-
ing the available sensors and registering sensor
listeners. The Sensor class is used to create a spe-
cific instance of a sensor to determine its capa-
bilities. The SensorEvent class is used by the sys-
tem to create events, which include the raw, time
stamped data of the sensor and the type of sensor
that generated the event. The SensorEventListener
interface defines two callback methods which the
system calls when the values of a sensor or the
accuracy of a sensor itself changes.

The best practice for accessing the motion
sensors, before the introduction of the previ-
ously mentioned batch mode, used to be to limit
the time window the application is actively sub-
scribed to the sensors to a minimum. The activity
class is a critical component of an application and
transitions through multiple states in its lifecy-
cle. When an application transitions to the state
where it is actively in the foreground and visible
to the user, the onResume() callback method of the
corresponding activity is called. This is the rec-
ommended place to subscribe to the motion sen-
sors. In contrast, when an application loses the fo-
cus or is partially covered due to another dialog,
the activity is paused and the onPause() callback
method is called. Even though the application may
return to its running state the Android documen-
tation recommends unsubscribing the sensor lis-
teners to limit the unnecessary battery drain.

However, this approach cannot be applied to
an application that is constantly recording the
sensor data. For example, a pedometer requires
constant access to the motion sensors to deter-
mine the amount of steps and detect possible false
positives. With the existing method the applica-

Action Nexus 4 [mAh] Nexus 5 [mAh]

UMTS Download 1339 1073

UMTS Upload 1410 1033

UMTS Call 983 637

UMTS Standby 18.3 10.4

WiFi Download 1158 549

WiFi Upload 475 488

GPS Searching 550 263

GPS Standby 0.4 0.7

NFC Standby - 4

Sensors 751 487

Display (max) 310 567

Table 1: Power usage of different components measured with
the TrepN profiler

Figure 1: left) Electronic interface to read out power consumption of a smartphone. right) Nexus 4 with an open back cover for connec-
ting measurement equipment.

34 IMVS Fokus Report 2014

tion would severely drain the battery. The new
batch-mode introduced with Android 4.4 permits
constantly listening to the sensors without sig-
nificantly increasing the battery consumption.
The batching refers to the mechanism of bundling
multiple values from the sensor before sending a
new event to the sensor event listeners. The An-
droid sensor framework support this by adding
an additional parameter to the registerListener()
method that allows the caller to specify the maxi-
mum latency in seconds before a batch needs to be
send to the listeners [3]. If this parameter is set to
zero, batch processing is completely disabled. The
significant power savings, as seen in Figure 2, are
based on preventing the System on Chip (SoC) of
waking up for each receiving sensor event. Multi-
ple events can be grouped and processed together
while each of them retains their own individu-
al timestamp. The batching is done in hardware
using FIFO queues, which temporarily hold the
sensor events before sending them through hard-
ware abstraction layer to the system [4]. The old-
est events in a queue will be dropped if there is
not enough space available to accommodate new
incoming events from the sensors.

The sensors in a smartphone are divided into
two categories: the wake-up sensors and the non-
wake-up sensors. Sensor events from wake-up
sensors are stored separately in a wake-up sen-
sor queue to ensure that the data is delivered re-
gardless of the SoC’s current state. The driver of
the wake-up sensors achieves this by keeping a
wake-lock for at least 200 ms to ensure that the
new event is delivered to an application. As a re-
sult the wake-up sensors, as their name implies,
will wake-up the SoC to deliver the events before
the specified maximum allowed reporting latency
has elapsed [5].

In contrast, non-wake-up sensors do not pre-
vent the SoC from entering in its sleep state and
more importantly will not wake up the SoC to
report new sensor events. The driver of the non-
wake-up sensors does not hold a wake-lock. There-
fore, the application is responsible for keeping a
partial wake-lock if it wants to receive new events
from non-wake-up sensors while the screen is off.
The events in the FIFO queues will be delivered to
the application as soon as the SoC returns from its
sleep state.

The batching cannot be emulated in software
and needs to be implemented in hardware. Since

1500

1300

1200

960

883

640

475

340

51

0

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00 07:12:00 08:24:00
Time spent in hours and minutes

M
Hz

Figure 2: CPU usage of a Nexus 5 in non-batch mode

1500

1300

1200

960

883

729

652

422

300

0

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00 07:12:00 08:24:00

Time spent in hours and minutes

M
Hz

Figure 3: CPU usage of a Nexus 5 in batch-mode

35IMVS Fokus Report 2014

the goal of batching is too reduce the battery drain
caused by sensors waking up the SoC, it definite-
ly cannot be implemented using the SoC itself.
Therefore, a separate hardware chip that pro-
vides and manages the FIFO queues is required
to keep the SoC in suspend mode during batch-
ing. Older devices such as the Nexus 4 are not able
to take advantage of this new feature in Android
4.4 as they lack the necessary hardware chip for
the queue. Registering a sensor listener with the
maxBatchReportLatency set to other than zero
will silently be ignored. The sensor listener will
receive the events as if it had registered the listen-
er with batching disabled.

Sensor Batching Tests
The effectiveness of the proposed practices is
shown with a series of tests on two different Nex-
us smartphones, Nexus 4 and 5. Both devices are
based on nearly the same Qualcomm Snapdragon
platform and equipped with same model of sen-
sors. However, the Nexus 5 also includes the re-
quired separate hardware chip to manage the for-
merly discussed FIFO queue. In order to create an
identical testing environment on both devices, the
latest stock Android 4.4 image (latest at the time
of writing) is used without any modifications to
the kernel. Since Android supports running appli-
cations concurrently in the background, the same
number of applications is installed on both devic-
es. This ensures that none of the running back-
ground processes will influence the measured re-
sults because if one of process would indeed affect
the battery drain, it would do so on both devices.

Diagnosing the battery drain requires direct
access to the power management on a smartphone.
On all Qualcomm Snapdragon based smartphones
such as the Nexus 4 and 5 the kernel provides ac-
cess to the power management. The TrepN Profiler
[6] is a plugin for Eclipse that uses kernel functions
to read out the statistics from the internal pow-
er management chip. This enables the accurate
profiling of the overall CPU usage and frequency,

memory as well as network usage. To measure the
overall power consumption of a Nexus device the
back cover needs to be opened because the bat-
tery with the connectors (marked in Figure 1b) is
sealed inside the body. The electronic interface
(Fig. 1a) connects to a debug port on the battery
connector (4-pin socket instead of the usual 2-pin
plus and minus pole socket). To minimize the ef-
fect of measuring errors on our test results, each
test is run three times and the average of all three
runs is taken as the actual measurement value. If
one measurement of those three runs differs from
all the others by more than 10% then that specific
run is repeated and the current measurement is
discarded.

As already mentioned the hardware-backed
FIFO queues require a separate chip that takes
over the management of the queues. Our test of
continuous recording sensors shows a clear dif-
ference in CPU usage between batching disabled
and enabled on a Nexus 5. The CPU in the Nexus
5 is kept asleep for longer periods since no inter-
rupts from the sensor are waking up the SoC. The
0 MHz bar in the charts (Fig. 2 and 3) represents
the CPU in deep sleep state (the 0 MHz is just the
interpretation of the TrepN profiler). The time
axis represents the time the CPU was running at
the specific frequency. With batching disabled
the CPU spends most of its time running at 475
MHz for processing sensor data even if the appli-
cation is idling, as seen in Figure 2. In contrast,
Figure 3 shows that enabling batching keeps the
CPU asleep for longer periods of time (Figure 2
and Figure 3 use different scaling since the CPUs
dynamically scale the clock up and down depend-
ing on the workload). Figure 4 and 5 confirm that
the different CPU states affect the battery drain.
The battery usage on a Nexus 4 shows no differ-
ence between measuring sensors in non-batch
and batch mode in Figure 4. Since the Nexus 4
does not have the required hardware chip the An-
droid’s sensor framework will automatically fall
back to non-batch mode. In comparison, the Nex-

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

Nexus 4: Battery Usage

Non-Batch Mode

Batch-Mode

s

m
W

Figure 4: Battery usage of a Nexus 4 in non-batch and batch-
mode

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

Nexus 5: Battery Usage

Non-Batch Mode

Batch-Mode

s

m
W

Figure 5: Battery usage of a Nexus 5 in non-batch and batch-
mode

36 IMVS Fokus Report 2014

us 5 in Figure 5 does show that the battery usage
in batch-mode is drastically cut by more than one
third. Logically, due to the lower CPU usage and
the fewer interrupts caused by wake-ups from
sensor events, the overall battery consumption is
reduced.

Flash Memory
So far we have shown that accessing the sensors
contribute significantly to the battery drain. The
presented solution of batching sensor events to-
gether has proven to positively affect the battery
drain issue. However, the sensors are not the only
component in a smartphone influencing the power
consumption in a significant manner. Depending
on its use, the flash storage increases the battery
drain as well. The typically used flash memory
(eMMC) in mobile phones suffers from an unwel-
come effect of write amplification where more
data is written to the flash than the application
actually committed to [7]. This is primarily due to
the nature of flash memory where data cannot be
directly overwritten compared to traditional hard
disk drives [8]. The severity of write amplification
is linked to the storage provider used in an ap-
plication. A storage provider on a mobile phone
should support fast reading and writing of data
while using a minimal amount of power. Further-
more, it should facilitate the processing (search-
ing, sorting, and filtering) and sharing of data be-
tween applications on the phone while making the
files unattainable for direct modification from
the outside to secure their integrity.

The Android storage framework provides the
following mechanism to store data in an appli-
cation: Shared Preferences represent a key-value
pair store, which holds primitive data types. It is
designed to store internal application preferences
rather than user object-data. A Content Provider
is a mechanism that manages the access to a set of
structured user data. The provider encapsulates
the data by providing a common CRUD interface
that allows easy access to the data from within
the application as well as third party applica-
tions. The Android framework also provides read/
write access to the underlying file system provid-
ed by the Linux kernel. Applications can use the
file system to store user data and preferences in
files regardless of data structure and format be-
ing employed.

Shared Preferences are designed for persisting
preferences that can be retrieved and set using a
string as a key to identify the associated value.
The critical issue with Shared Preferences is that
they are application specific and therefore cannot
be used to share data. Files suffer from the same
problem. All applications on Android run in a
sandboxed environment where each application is
run with a separate user account. The associated

files are kept private and no other user respective-
ly application can access these files [9].

The Content Provider mechanism is a set of
methods and structures designed to separate the
raw data from the aggregated complex data at
runtime. For example, the Contact Provider com-
bines information about the contacts from multi-
ple sources such as a SIM card, contacts from a
Google account, application specific contacts etc.
The provider itself can implement the usage of the
storage in two ways:
• Firstly, a file-centric approach where the data

normally goes into files which are stored in the
application’s private space.

• Secondly, a structured data approach where
the data is placed into a database, an array or
a similar structure by mapping the data into a
set that is compatible with rows and columns.
In general, any type of storage can be used, but
a common way to store this type of structured
data is to use an SQLite database, because An-
droid offers built-in support for SQLite. A sub-
stantial part of the writing process is hidden
from the developer when a single record is put
into a database. The commit call for the data-
base immediately returns and the developer
assumes that the data has already been writ-
ten to the disk and moves on.

It is inherently difficult to determine which com-
ponents of the process are the least efficient and
affects a phone’s battery the most. To identify the
factors that influence the power consumption, a
detailed understanding of how embedded Multi-
Media-Card (eMMC) storage works is necessary.

Write Amplification
General flash-based storage found for example in
solid state drives separate the NAND flash chips
from the controller. The controller is a critical
component as it handles the mapping between
disk-based track and sector geometry and the
flash-based cell geometry. Due to the small device
requirements of smartphones, the controller and
NAND flash memory are contained within one
package [10].

When writing data to flash storage, an unde-
sirable but unavoidable issue is the occurrence of
write amplification where the actual data written
to the flash is a multiple of the data that the host
requested to be written. The root cause of write
amplification is that individual pages of memory
can be written to empty flash memory cells but
the pages can only be erased in larger units, called
blocks. If a block contains invalid and valid pages,
then the eMMC controller must first read in all
the valid pages of a block it wants to write new
data into. After caching those valid pages it will
invalidate all pages in that specific block and fi-
nally write both the old and updated pages back
to the block.

37IMVS Fokus Report 2014

The example depicted in Figure 6 illustrates
the issue quite well:
1. In the left column of Figure 6 four pages (A–D)

are written to block 1. Individual pages can be
written at any time if they are currently free
respectively erased.

2. In middle column of Figure 6 four new pages
(E–H) and four replacement pages (A’–D’) re-
placing (A–D) are written to block 1. The origi-
nal pages (A–D) are invalidated (so called stale
data) and cannot be overwritten with new data
until the whole block has been erased.

3. In order to overwrite pages with stale data (A–
D) the remaining valid pages in block 1 (A’–D’
and E–H) are read, cached within the controller
or directly written to another block (right col-
umn in Figure 6). Now, the controller is able to
completely erase block 1 which resets the mem-
ory cells so new data can be written into it.

The undesired increased number of writes occu-
pies bandwidth to the flash storage and hampers
the random write performance severely. When the
storage is relatively empty write amplification
doesn’t occur since there are enough fresh empty
cells the controller can use. However, when a large
amount of data has already been written to the
flash memory and only few empty cells are avail-
able, write amplification occurs. The controller
needs to shift valid pages to other blocks in or-
der to be able to clear all invalid pages, as seen in
the former example. The I/O performance of Goo-
gle’s Nexus 7 (2012 Edition) suffers from this issue
where the device’s subjective performance slows
down after months of use, which leads to an in-
consistent user experience.

Since Android 4.3 the negative effect of write-
amplification has been alleviated, because Google
has enabled the support for TRIM, a mechanism
that trims blocks that are not used in the file sys-
tem. Briefly summarizing, TRIM allows the OS to
tell the eMMC controller that a block is no longer
in use and ready for garbage collection. It is im-
portant to mention that deleting a file or a record
in a database is not actually communicated to the
eMMC controller. Even though the space is freed
up in the file system the controller still treats the

block with the pages as containing valid data that
cannot be purged. The controller is forced to move
pages that are invalid but still treated as valid
pages in the block and hence needs additional
power. Exactly quantifying the additional battery
drain is difficult, because file system operations
are handled by the Linux kernel and applications
do not have a direct way of managing those from
user space to observe when exactly write ampli-
fication occurs. However, when writing records
into a Content Provider backed by a database the
hypothesis that a correlation between battery
consumption and the occurrences of write ampli-
fication exists can be made. The higher the write
amplification the more power the smartphone
will draw from the batteries since it requires
more time to complete the writing process. To test
this hypothesis 10 000 objects consisting of sensor
event values are inserted into a Content Provider
while the execution time and battery consumption
are measured. Three distinctive approaches for
inserting the records into the database are used:
• Each single record is inserted separately using

the methods provided by a Content Provider.
No optimizations are done in a Content Provid-
er or the insertion call itself.

• A batch-oriented approach is applied. Similar
to the solution of the sensors where multiple
events are bundled together, multiple records
are bundled to a batch for inserting them at
once into the database. The idea is to eliminate
the transactional overhead as well as prevent-
ing possible write amplifications that might
occur in the first approach due to repeated
writings of smaller data junks.

• GreenDAO, an object-relational mapping (ORM)
framework for Android is used for storing the
sensor event objects into a database [11]. It
promises to put its focus on maximum perfor-
mance. GreenDAO takes over the responsibili-
ty of a Content Provider and offers methods to
persist objects directly.

In order to minimize measurement errors, again
each test is repeated three times and the average
execution time of the three runs is used for the
comparison. The test results depicted in Figure 7

Figure 6: left column) Pages written to free memory cells in a block. middle column) Invalidating old pages (stale data) and replacing
them with new ones in a block. right column) Cleaning up stale data and writing old as well as new data back to the block.

Step1

Page 1

Block 1

A B C

D free free

free free free

free free free

Block 2

free free free

free free free

free free free

free free free

Step2

Page 2

Block 1

A B C

D E F

G H A'

B' C' D'

Block 2

free free free

free free free

free free free

free free free

Step3

Page 3

Block 1

free free free

free free free

free free free

free free free

Block 2

free free free

free E F

G H A'

B' C' D'

38 IMVS Fokus Report 2014

References
[1] Rob van der Meulen, Janessa Rivera. Gartner Newsroom

Press Release, 2014.

https://www.gartner.com/newsroom/id/2791017

[2] Oliver Spatscheck, Alexandre Gerber, Subhabrata Sen. A

call for more energy-efficient apps, 2011.

http://www.research.att.com/articles/featuredstories/

201103/201102Energyefficient?fbid=pvIdc4jPUQE.

[3] M. Hidaka. Android 4.4 sensor batching. 2013.

http://techbooster.org/android/device/16666/

[4] Android Developers Documentation. Android Sensor

Batching. 2014.

https://source.android.com/devices/sensors/batching.html

[5] Android Developers Documentation. Suspend mode –

Wake-up Sensors, 2014.

https://source.android.com/devices/sensors/suspend-

mode.html#wake-up_sensors

[6] Qualcomm Technologies. Increase app performance with

TrepN profiler, 2013.

https://developer.qualcomm.com/mobile-development/

increase-app-performance/trepn-profiler

[7] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Ili-

adis, Roman Pletka. Write Amplification Analysis in Flash-

Based Solid State Drives. IBM Zurich Research Laboratory.

[8] Cameron Crandall. SSD: Flash Memory and Write Amplifi-

cation. Kingston Technology.

http://www.kingston.com/us/community/articledetail?

articleid=17

[9] Nikolay Elenkov. Android Security Internals: An In-Depth

Guide to Android’s Security Architecture. No Starch Press,

p12, p50-59, 2014.

[10] Datalight Technologies. What is eMMC?

http://www.datalight.com/solutions/technologies/emmc/

what-is-emmc

[11] Vivien Dollinger, Markus Jungiger. greenDAO – Android

ORM for SQLite, 2013.

http://greendao-orm.com/features/

show a distinctive difference between the batch
and non-batch approach of inserting the records
into the database. Using a single transaction for
inserting 10 000 objects takes 2.5 seconds. It is
relatively fast in comparison with the non-batch
approach that requires 14 seconds. The negligible
difference between the ORM framework Green-
DAO and batch-insertion is due to the overhead of
object-relational mapping. The measured battery
usage in Figure 8 reflects the same result. There
is a considerable difference between batch and
non-batch approaches. The drain is about twice
as high for not batching the records. In contrast,
the battery consumption only slightly increases
from manual batching to using GreenDAO. Since
the CPU usage between all three approaches is
nearly identical, the correlation can be made that
the increased consumption is caused by the am-
plified writes to the flash memory. The less time
a smartphone is spending on data persisting, the
more battery can be saved.

Summary
Application development on mobile platforms is
still more difficult compared to desktop systems
because of the limited resources available on mo-
bile devices. Applying specific techniques consid-
erably improves the battery efficiency as shown
in the presented examples. Compared to desktop
systems where the abundance of resources elimi-
nates any incentive of optimizing an application,
small changes in mobile applications lead to no-
ticeable improvements. Bundling operations in
batches has proven to be an effective technique
in general. Applied to the sensor framework as
well as the persistence mechanism it drastically
reduces the power consumption.

0 20000 40000 60000 80000 100000 120000 140000 160000

140119

2588

3077

Write Operation

Non-Batch SQLite

Batch SQLite

GreenDAO

ms

Figure 7: Execution time for write operation into a database

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

Battery Usage

Non-Batch SQLite

Batch SQLite

GreenDAO

ms

m
W

Figure 8: Comparison of battery usage between different stor-
age providers

