
 
 
 
 
 
 
SLIDING RESISTANCE AT THE JOINT BETWEEN A STRUCTURAL 
WALL AND THE BASEMENT CEILING: A MECHANICAL MODEL 

 
Harald SCHULER1 and Burkhart TROST2  

ABSTRACT 

The stabilization of tall buildings against earthquakes in many cases is realised by structural walls 
which are anchored in the basement box. When the anchorage length between the fixing points of the 
walls is small, a high shear force can occur. Additionally at the cold joint between the walls and the 
basement ceiling a weak point exists. Therefore an investigation on the sliding resistance at cold joints 
was launched at the FHNW.  
 
This paper presents a mechanical model which is used to analyse the sliding resistance at the cold joint 
of nearly quadratic basement walls. The analysis is done on a building with a height of 40m and a 
basement wall size of 4m x 4m. In the parameter study the axial force and the reinforcement ratios, at 
the boundary and in the web, are varied. Analysed are the resistances of aggregate interlock, dowel 
action and the shear resistance of the reinforcement which is under compression. The study shows that 
for a quadratic wall in most cases, failure due to sliding occurs before the maximum flexural 
deformation is reached. Thus the flexural ductility, e.g. in pushover analysis, is overestimated when 
the anchorage lengths of the structural wall is short. Therefore it is recommended for squat walls to 
take a previous sliding failure into account in a performance-based earthquake analysis.   

INTRODUCTION 

Reinforced concrete structures under earthquake loads can be highly stressed in the zones where the 
structural walls are anchored into the basement. The forces and moments have to be transferred from 
the walls into the basement floor and the basement ceiling. Figure 1 shows the section under 
consideration. The construction of the basement proceeds from the basement slab to the walls and then 
to the basement ceiling. This leads to cold joints between the structural walls and the ceiling plate. 
Across this joint, the wall forces are transferred via aggregate interlock, dowel action, and a diagonal 
stress field in the compression zone. Under reversed cyclic loading, the concrete joint suffers a 
decrease in shear strength because of crack opening. Within the first two half-cycles - first and second 
half-cycle in Figure 2 - a crack emerges along the complete joint. If the vertical load carried by the 
wall is relatively small, crack closing in the compression zone only takes place up to a certain level, 
which results in a residual crack opening, thus enabling sliding. To study this phenomenon, 
experiments on compact sliding specimens are carried out by Trost et al. (2014). 
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In this paper a mechanical model is presented which implements sliding as an additional failure 
criterion to a nonlinear load-displacement curve. With the model, single effects like aggregate 
interlock (simulated as friction), dowel action or the load capacity of the diagonal stress field can be 
separated and quantified. This enables an insight into the single effects along the cold joint. The model 
is set up on the beam theory and therefore limited to walls with an aspect ratio hb/lw not smaller than 
approximately 0.8.  
 
 

                       
 
Figure 1. Concrete joints between the structural wall and the slabs (left); bending moment, shear - and axial force 
from the response spectrum analysis (right) 
 
 
 
 

 
Figure 2. Crack opening process at the joint between the structural wall and the ceiling plate under reversed 
cyclic loading 
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A SLIDING FAILURE CRITERION ALLOCATED TO THE BASEMENT SHEAR - 
TOP DISPLACEMENT CURVE 

The concept of the model is to calculate the load-displacement curve and check the sliding resistance. 
To investigate the sliding resistance at the cold joint, the basement shear force Vb is considered as the 
load and related to the top displacement δt of the building (cf. also Figure 5). The shear force at the 
anchorage Va can also be calculated from equation 3. For the investigated wall with ht = 40m and hb = 
4m and a triangular load distribution Vb/Va is 6.7. The following three steps set up the model. 
 

1. Moment-curvature curve (M-κ curve) 
 
For the calculation of the momentum-curvature relationship, the cross-section type of Figure 4 is 
considered. Addressed are walls where the bending deformation dominates over the shear deformation 
which can be assumed when the ratio between the height and the length is higher than hb/lw ~ 0.8. In 
the parameter study of this paper, a ratio of 1 is applied. To obtain the momentum-curvature 
relationship, the steel strain εs1 in the tension zone is predefined and the concrete boundary strain εc2 is 
solved under the condition that the sum of the vertical forces has to be equal to zero: 
 
Fs1 + Fsw1,y + Fsw1,el + Fsw2 + Fs2 + Fc + N = 0 (positive in one direction)   (1) 
 

- Fc:  Flexural compression resultant of concrete 
- Fs1:  Flexural tensile resultant of the reinforcement As1 
- Fs2:  Flexural compression resultant of the reinforcement As2 
- Fsw1,y:  Flexural tensile resultant of the web reinforcement which yields: asw·xsw1,y·fs 
- Fsw1,el:  Flexural tensile resultant of the web reinforcement which is elastic: asw·xsw1,el·fs/2 
- Fsw2:  Flexural compression resultant of the web reinforcement: asw·xsw2,el·εsw2/2 (εsw2 can be  

calculated geometrically from εc2 and remains elastic in all investigated cases.) 
 
For the solution of the nonlinear equation, a numerical solver is used. The solved concrete strain εc2 
also delivers the lengths x, xsw1,el, xsw1,y, xsw2 and the forces Fs1, Fsw1,y, Fsw1,el, Fsw2, Fs2, Fc which change 
for the predefined steel strains εs1. With the distances of the forces from the centre of the cross section 
the bending moment for the moment-curvature curve can be calculated:  
 
M = Fc·(lw/2-a) + Fs1·(lw/2-d1) + Fs2·(lw/2- d2) + Fsw1,y·zsw1,y - Fsw1,el·zsw1,el + Fsw2·zsw2  (2) 
 
The constitutive equations of concrete and steel are based on the Swisscode SIA 262:2013 and the 
instruction sheet SIA 2018: C30/37: fc = 30N/mm2, εcu = 4‰; B500B: fs = 500N/mm2, εsu = 50‰, Es = 
205kN/mm2, εy = 2.44‰. In Figure 3 the stress-strain relationships are illustrated. 
 

           
Figure 3. Constitutive equations of concrete and steel  
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Figure 4. a) Cross section of a typical earthquake shear wall; b) strain distribution; c) forces  
 

2. Basement shear – top displacement curve (Vb-δt curve)  
 
The displacements at the top of the building δt are calculated for seven points of the moment-curvature 
curve. Figure 7 shows the points and the according steel strains εs1 = [0.5, 1.5, 2.44, 5, 10, 15, 25.8]‰ 
and concrete strains εc2 = -[0.38, 0.62, 0.86, 1.31, 2.05, 2.72, 4.0]‰. The calculation is done with the 
principle of virtual forces for the flexural displacement δflex and the rotation angle φ at the anchorage 
in the basement.  
 
The first step is to calculate the load qt for the considered moment M of the moment-curvature curve. 
For a triangular load distribution, the second equation in (3) has to be solved for qt. One obtains the 
load which corresponds to the clamping moment Ma. The next step is to calculate the line of the 
bending moment and the curvature along of ht and hb. With these two lines, the flexural displacement 
and the rotation angle are calculated with the principle of virtual forces (equation (4)). Thus the 
relation of the top displacement δt = φ· ht + δflex to the shear force in the basement wall Vb can be 
calculated. The necessary virtual load cases 1 for the rotation angle and the flexural displacement are 
illustrated in the 5th and 6th row of Figure 5. The displacement is used in the parameter study as the X-
values in the Figures 7 to 11.  
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Va =
1
2

· qt · ht;              Ma =
1
3

· qt · ht
2;            Vb =

ME

hb
=

1
3

· qt · ht ·
ht
hb

=
2
3

·
ht
hb

∙ Va (3) 

 

δflex = � κ(x) · M1(x)dx;        ϕ = � κ(x′) · M1(x′)dx′;     
hb

0

ht

0
δt = δflex + ϕ · ht (4) 

 

 
Figure 5. Calculation of the displacement δt at the top of the building with the principle of virtual forces   
 

3. Sliding resistance 
 
The sliding resistance comprises several effects, which are specified in equations 5 to 9 and listed 
below. With equation 10, the sum of the single effects is built. The calculation is done at seven points 
on the moment-curvature curve and provides thus an additional sliding failure criterion allocated to the 
basement shear force – top displacement curve (Vb-δt curve). In Figures 7 to 11, this failure criterion is 
added as Vslid to the Vb-δt curve denoted as Fflex. 
 
The single effects of sliding are: 
 

- Vc:  Friction resistance due to aggregate interlock of concrete in the compression zone,  
 limited by the resistance of the inclined compression stress field resultant Cmax 

- Vs2:  Shear resistance of the reinforcement As2 in the compression zone 
- Vsw2:  Shear resistance of the web reinforcement xsw2·asw in the compression zone 
- Vsw1:  Resistance due to dowel action of the web reinforcement xsw1,el·asw in the tension zone  
- Vs1:  Resistance due to dowel action of the reinforcement As1 in the tension zone, if εs1 < εy 

 
In the parts of the cross-section where the yield strain is exceeded, no sliding resistance of the steel 
can be activated. The steel is already utilized through bending. In parts where the steel is elastic, the 
residual stress up to the yield strength is available for sliding resistance. The interaction of bending 
und sliding is approximated with [1-(εs/εy)2], according to Zilch (2010).  
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The resistance of concrete Vc due to aggregate interlock in the compression zone is described by a 
friction model (µc=0.7) and is limited through the strength of the inclined compression stress field 
Vc_max (cf. centre right in Figure 7 to 11). For the strength, the concrete compression strength softening 
factor kc is set to 0.882, which is the mean value of the stress-strain relationship in Figure 3. Figure 6 
b) illustrates the derivation of the sliding resistance of the inclined compression stress field. The angle 
α is obtained from the residual capacity of the stress field after bending (cf. equation 6 and bottom left 
in Fig. 7 to 11). The factor c in equation (9) for the description of dowel action is set to 1.3 (Zilch 
2010). Cohesion is not applied because of complete crack opening within the first two half cycles.  
 
Vc = min [Vc_µ; Vc_max];           Vc_µ = µc · Fc  (5) 
 

Vc_max = kc · fc · x · tw · sin(α) · cos(α) ;         α = arcsin ��
Fc

kc · fc · x · tw
�    (6) 

 

Vs2 = As2 · fs · �1 − �
εs2
εy
�
2

� (7) 

 

Vsw2 = asw · xsw2 · fs · �1− �
0.5 ∙ εsw2

εy
�
2

� (8) 

 

Vsw1 = asw · xsw1,el · c · (fc · fs)0.5 · �1 − �
0.5 ∙ εy
εy

�
2

� = asw · xsw1,el · c · (fc · fs)0.5 · 0.75 (9) 

 
Vslid = Vc + Vs2 + Vsw2 + Vsw1 (10) 
 

 
Figure 6. Components of the sliding resistance (Vc, Vs2, Vsw2, Vsw1) and maximum sliding resistance Vc_max due 
to the load capacity of the inclined stress field   
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PARAMETER STUDY 

The parameter study considers a building with a height of ht = 40m which is stabilized through two 
shear walls in each direction with the dimensions of lw = 4m and tw = 0.4m. The anchorage length in 
the basement is hb = 4m, which is a ratio of ht / hb = 10. The results of the study are shown in the 
Figures 7 to11 where the dots in the curves correspond to seven selected strain distributions which are 
listed in the lower right box. For the first two dots, εs1 is elastic; for the third it is εy; and for the 
seventh, it is the failure point under flexure, which comes along with a failure of the compression 
resultant (εc2 = -4‰). Vslid is the failure criterion due to sliding which is calculated at each dot of the 
Fflex-δt curve. In most cases, the Fflex-δt curve is intersected by the Vslid-δt curve, which leads to a 
reduction in the deformation capacity and hence of the ductility. The ductility is obtained from a 
bilinear idealisation of the Fflex-δt curve. Table 1 summarises the reduction of ductility for five 
different configurations. 
 
M: Bending moment  
Fflex:  Basement shear force as a function of the displacement at the top of the building (Vb-δt curve) 
Fpush: Bilinear idealisation of the basement shear force – top displacement curve 
Vslid:  Sliding resistance at the cold joint (sum of the following single effects) 
Vc: Sliding resistance in the concrete compression zone: min[Vc_µ, Vc_max]  
Vc_µ: Sliding resistance due to concrete friction (aggregate interlock) 
Vc_max: Sliding resistance due to the inclined compression stress field of concrete 
Vs2:  Sliding resistance due to the residual shear resistance capacity after bending of As2  
Vsw2:  Sliding resistance due to the residual shear resistance capacity after bending of Asw2  
Vs1:  Sliding resistance due to the residual load capacity of dowel action after bending of As1,  

if εs1 < εy 
Vsw1:  Sliding resistance due to the residual load capacity of dowel action after bending of Asw1 
κ: Curvature 
κa: Curvature at the anchorage in the basement 
δt: Displacement at the top of the building 
xc:  Compression zone of concrete 
α: Angle of inclined (diagonal) stress field when the strength kc·fc in the stress field is reached 
 

Table 1. Displacements at the top of the building and ductility reduction due to sliding for five wall 
configurations 

ρ1 = ρ2 [‰] ρw [‰] n [-] δmax [m] δy [m] δslid [m] µmax [-] µslid [-] red [%] 
2 0.1 -0.1 0.518 0.268 0.400 1.93 1.49 23 
2 0.1 0 0.534 0.365 0.534 1.46 1.46 0 
2 0.1 -0.3 0.419 0.292 0.358 1.43 1.23 14 
3 0.1 -0.1 0.55 0.301 0.418 1.83 1.39 24 
2 0.5 -0.1 0.617 0.349 0.501 1.77 1.44 19 

 
ρ1 = As1/(2·d1·tw): Boundary element longitudinal reinforcement ratio in the tension zone 
ρ2 = As2/(2·d1·tw): Boundary element longitudinal reinforcement ratio in the compression zone 
2·d1 = 0.1·lw: Length of the boundary tension zone of As1 
2·d2 = 0.1·lw: Length of the boundary compression zone of As2 
ρw = asw/tw: Reinforcement ratio in the web 
δmax: Maximum displacement at the top of the building (flexural failure point) 
δy: Yield displacement at the top of the building for a bilinear approximation of the basement 

shear force – top displacement curve 
δslid: Maximum displacement at the top of the building due to sliding failure (intersection of the 

sliding curve with the flexural curve – top right in Figure 7 to 11)  
µ: Ductility in the bilinear approximation (top right in Figure 7 to 11) 
 

n =
N

kc · fc · lw · tw
 Normalized axial force, negative for compression 

  



CONCLUSIONS 

This paper presents a mechanical model for the calculation of the sliding resistance which is 
associated to the load-displacement curve. The model quantifies the single effects of aggregate 
interlock, shear and dowel action for the purpose of illustration and discussion. 
 
In a parameter study, a quadratic basement wall is analysed, varying the axial force and the 
reinforcement ratios at the boundary and in the web. The following phenomena have been observed: 
 

- In most cases, the maximum flexural deformation is not reached because sliding failure occurs 
already at a smaller deformation.  

- The reduction of the maximum deformation due to sliding amounts to between 15 and 24% 
for a normalized axial force between n = -0.1 and -0.3. This leads to a reduction of the 
ductility between 14 and 24%. 

- For an axial force of zero, a previous sliding failure was not found for the quadratic wall. 
- The main amount of sliding resistance arises in the compression zone. For each of the five 

investigated configurations the diagonal stress field fails at the intersection point of the sliding 
failure criterion with the load-displacement curve. Thus, friction failure at the intersection 
point is not decisive. In addition to the concrete resistance, the shear resistance of the steel in 
the compression boundary zone amounts a crucial part. 

- The amount of the dowel action in the tension zone is relatively small, even for a web 
reinforcement ratio of 0.5%.  

 
This calculation study of the sliding resistance at the cold joint is based on the descriptions of the EC2 
and Zilch (2010) under static loadings. The aim was, to set up a model which separates the single 
effects without a detailed consideration into the insight of the effects. As mentioned in the 
introduction, cyclic loading changes the conditions through a permanent crack opening along the joint, 
which leads e.g. to a reduction of the friction coefficient or the resistance of dowel action in the 
tension zone. This phenomenon should be analysed in further investigations more in detail (cf. Trost et 
al. 2014). Furthermore the model is only applied to one basement wall geometry of 4m x 4m and a 
building height of 40m. A further study will be more general, which is planned in the ACI-Journal. 
 
 

REFERENCES 
 
Burgueno R, Liu X and Hines EM (2014) “Web Crushing Capacity of High-Strength Concrete Structural Walls: 

Experimental Study”, ACI Structural Journal, V.111, No.2, March-April 2014, pp. 235-246 
Hines EM and Seible F (2004) “Web Crushing of Hollow Rectangular Bridge Piers”, ACI Structural Journal, 

V.101, No.4, July-Aug. 2004, pp. 569-579 
Beyer K, Dazio A, Priestley MJN (2011) “Shear deformations of slender reinforced concrete walls under seismic 

loading”, ACI Structural Journal, V. 108, No. 2, March-April 2011, pp. 167–177 
Trost B, Schuler H and Stojadinovic B (2014) “Experimental investigation of sliding on compact sliding 

specimens under cyclic loads”, Proceedings of the 15th European Conference on Earthquake 
Engineering, Istanbul, Turkey, 24-29 August 

Zilch K and Zehetmaier G (2010) “Bemessung im konstruktiven Betonbau”, Springer-Verlag Berlin Heidelberg, 
pp 627 

DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 
1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1: 2004 
+ AC:2010, Januar 2011 

SIA 262:2013: Betonbau. Schweizer Ingenieur- und Architektenverein, Zürich 2013 
SIA 2018: Instruction sheet. Überprüfung bestehender Gebäude bezüglich Erdbeben. Schweizer Ingenieur- und 

Architektenverein, Zürich 2004 

APPENDIX 

  

8 
 



 H.Schuler and B.Trost 9 
 

      

   

 
Figure 7. a) Moment - curvature curve; b) basement shear - top displacement curve (Fflex) + bilinear approximation (Fpush) and 
sliding failure criterion (Vslid); c) sliding resistance due to concrete (Vc), dowel action (Vs1, Vsw1) and shear resistance (Vs2, 
Vsw2); d) sliding resistance of concrete friction (Vc_µ) and inclined compression stress field (Vc_max); e) compression zone 
length (xc) and angel of inclined compression stress field (α) 
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Figure 8. a) Moment - curvature curve; b) basement shear - top displacement curve (Fflex) + bilinear approximation (Fpush) and 
sliding failure criterion (Vslid); c) sliding resistance due to concrete (Vc), dowel action (Vs1, Vsw1) and shear resistance (Vs2, 
Vsw2); d) sliding resistance of concrete friction (Vc_µ) and inclined compression stress field (Vc_max); e) compression zone 
length (xc) and angel of inclined compression stress field (α) 
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Figure 9. a) Moment - curvature curve; b) basement shear - top displacement curve (Fflex) + bilinear approximation (Fpush) and 
sliding failure criterion (Vslid); c) sliding resistance due to concrete (Vc), dowel action (Vs1, Vsw1) and shear resistance (Vs2, 
Vsw2); d) sliding resistance of concrete friction (Vc_µ) and inclined compression stress field (Vc_max); e) compression zone 
length (xc) and angel of inclined compression stress field (α) 
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Figure 10. a) Moment - curvature curve; b) basement shear - top displacement curve (Fflex) + bilinear approximation (Fpush) 
and sliding failure criterion (Vslid); c) sliding resistance due to concrete (Vc), dowel action (Vs1, Vsw1) and shear resistance 
(Vs2, Vsw2); d) sliding resistance of concrete friction (Vc_µ) and inclined compression stress field (Vc_max); e) compression 
zone length (xc) and angel of inclined compression stress field (α) 
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Reinforcement, axil force, cross section: 
ρ1 = ρ2 = 3%; ρw = 0.1%; n = -0.1 
tw = 2·0.4m = 0.8m; lw = 4m; 2·d1 = 2·d2 = 0.4m 
 
Building: 
ht = 40m; hb = 4m 
 
Units: 
F [MN]; V [MN]; M [MNm] 
δt [m]; κ, κa [mrad]; xc [m]; α [°] 
 
Strain at the dots: 
es1 =  [0.50¦ 1.50¦ 2.44¦ 5.00¦ 10.00¦ 15.00¦ 25.80]‰ 
ec2 = -[0.34¦ 0.64¦ 0.92¦ 1.38¦   2.13¦   2.78¦   4.00]‰ 
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a) b) 

c) d) 

e) 
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Figure 11. a) Moment - curvature curve; b) basement shear - top displacement curve (Fflex) + bilinear approximation (Fpush) 
and sliding failure criterion (Vslid); c) sliding resistance due to concrete (Vc), dowel action (Vs1, Vsw1) and shear resistance 
(Vs2, Vsw2); d) sliding resistance of concrete friction (Vc_µ) and inclined compression stress field (Vc_max); e) compression 
zone length (xc) and angel of inclined compression stress field (α) 
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Reinforcement, axil force, cross section: 
ρ1 = ρ2 = 2%; ρw = 0.5%; n = -0.1 
tw = 2·0.4m = 0.8m; lw = 4m; 2·d1 = 2·d2 = 0.4m 
 
Building: 
ht = 40m; hb = 4m 
 
Units: 
F [MN]; V [MN]; M [MNm] 
δt [m]; κ, κa [mrad]; xc [m]; α [°] 
 
Strain at the dots: 
es1 =  [0.50¦ 1.50¦ 2.44¦ 5.00¦ 10.00¦ 15.00¦ 17.60]‰ 
ec2 = -[0.34¦ 0.66¦ 0.95¦ 1.55¦   2.54¦   2.26¦   4.00]‰ 
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