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ABSTRACT 

Convergence of numerical schemes for pipe network analysis requires continuous modelling of pressure losses in the transition region between 

laminar and turbulent regions. Several existing correlations for the friction factor of straight pipes and helical tubes are presented. Based on these 

correlations a new explicit correlation for helical tubes with arbitrary surface roughness is derived. The friction factor is expressed as a continuous 

function of the Reynolds number covering laminar, transitional, and turbulent flow regions. Potential sources of error are also discussed, including 

the effects of tube deformation caused by the bending process. 
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1. INTRODUCTION 

Helical tube heat exchangers are widely used for heating, cooling, and 

solar thermal applications. Fig. 1 shows an example with five parallel 

coils made of carbon steel tubes for a large solar thermal storage tank. 

 

 
Fig. 1  Helical coil heat exchanger under construction, with five 

parallel coils (Courtesy of Jenni Energietechnik AG, CH-3414 

Oberburg). 

To limit pressure losses and to avoid flow noise these heat 

exchangers are often designed for flow velocities below 1.5 m/s. In 

addition, cooling circuits and solar thermal plants mostly use water-

glycol mixtures as a heat transfer medium, which are about 10 times 

more viscous than water at the same temperature. Therefore, the 

Reynolds numbers are often quite low and cover the laminar, 

transitional, and the beginning of the turbulent regions. The width of the 

transition region depends on the geometry of the flow channel and on 

the flow conditions at the inlet. From an engineering point of view, the 

predictability of the exact location of this region is not important. 

However, convergence of numerical schemes for thermal-hydraulic 

pipe network analysis requires continuous interpolation between 

laminar and turbulent regions. 

Since the work of Eustice (1911), Dean (1927) and Dean (1928) 

on laminar flow in curved tubes, many researchers contributed 

experimental and/or theoretical work in this field. Ito (1959) derived 

friction factor correlations for turbulent flow in smooth, curved tubes, 

based on the 1/7-power velocity distribution law and the logarithmic 

velocity distribution law. These correlations contain the parameter, d/D, 

where d is the inner diameter of the tube and D its diameter of 

curvature. Application of these correlations is limited to a certain range 

of diameter ratios. Recently, Zhao et al. (2016) published an implicit 

friction factor correlation for turbulent flow in helical tubes with 

arbitrary roughness. The critical Reynolds number, Recrit = 

2×104∙(d/D)0.32, was taken from Ito (1959, Eq. 11). Their correlations 

contain the same parameter, d/D. Consequently, application of these 

correlations is also limited to a certain range of diameter ratios. Mishra 

and Gupta (1979) derived friction factor correlations for laminar and 

turbulent flow in smooth helical tubes which are applicable in the limit 

of infinite curvature diameter, D → ∞. Based on their correlations a 

more general friction factor correlation is derived in Section 2, featuring 

the following properties: 

 

 In the limit of infinite curvature diameter the friction factor 

equals the value for straight pipes. 

 The correlation covers laminar, transitional and turbulent 

flow in a continuous way. 

 The correlation is valid for pipes with arbitrary roughness. 

 

Parts of this article build on the corresponding section of the 

textbook on thermal hydraulic dimensioning of solar plants by  

Eismann (2017, p.39-43). 
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In the following section, several terms and correlations will be 

introduced for later use. 

1.1  Correlations for laminar and turbulent flow in straight 

pipes 

The pressure loss, Δp, is expressed as a function of the dimensionless 

Darcy-Weisbach friction factor, λ, the pipe length, l, its inner diameter, 

d, and the volumetric kinetic energy of the liquid, ρw2/2, where ρ is the 

density and w the average flow velocity: 
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Flow in straight pipes up to a critical Reynolds number of about 

Recrit = 2200 is considered laminar. The friction factor, derived 

analytically from the steady form of the Navier-Stokes equation, is 
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For turbulent flow in hydraulically smooth, straight pipes and 

Reynolds numbers in the range Recrit < Re < 105, friction is well 

described by the correlation of Blasius (1913): 

 
0.250.3164 Returb      (3) 

 

For turbulent flow in pipes with arbitrary roughness the implicit 

correlation of Colebrook-White (1939) is often used: 
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The dimensionless ratio ε/d is the relative roughness of the pipe 

wall. Equations (1) to (4) are discussed in detail and within a historical 

context by Brown (2002). 

Explicit approximations of the Colebrook-White correlation (4) 

are preferred because of computational efficiency. Zigrang and 

Sylvester (1985) provided a review on explicit correlations for the 

turbulent region and derived several correlations of various accuracy 

and complexity. Equation (5) shows the corrected form of Zigrang and 

Sylvester (1985, Eq. 14) as presented in U.S.NRC (2001, Eq. 3.3-206): 
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Brkic (2011) discussed 21 explicit correlations for the turbulent 

flow region, among them his own approximation as well as the 

correlation of Zigrang and Sylvester (1985) and the correlations of 

Churchill (1977) which are shown in Eqs. (7) and (8).  Winning and 

Coole (2013) extended the review to 28 explicit correlations. All 

authors defined the accuracy of these correlations by the relative 

difference to the Colebrook-White correlation (4). 

The conditions for the transition between laminar and turbulent 

flow are discussed in detail by Mullin (2011).  There exists a critical 

Reynolds number of the order Recrit = 2000, below which any 

disturbances decay exponentially and the flow will eventually become 

laminar. On the other hand, there is no critical Reynolds number above 

which arbitrarily small disturbances will cause transition to turbulent 

flow. Draad et al. (1998) have shown experimentally that laminar flow 

in very smooth pipes can persist up to Re ≈ 6 × 104 if the inlet 

disturbances are thoroughly minimized and vibrations are kept from the 

pipe. In real-world installations, however, flow disturbances induced by 

non-ideal inlet conditions of pipe sections cause transition to fully 

turbulent flow above Returb ≈ 3000 to 4000. In the transition region 

between Recrit and Returb the probability of turbulent flow increases with 

rising Reynolds number. 

1.2 Continuous correlations covering laminar, transitional, 

and turbulent flows in straight pipes 

Continuous modelling of the transition region is a prerequisite for the 

convergence of numerical schemes used in pipe network analysis. In 

this section, three different approaches are presented. The thermal-

hydraulic system code RELAP5 (see U.S.NRC 2001; p. 139) uses the 

correlation of Zigrang and Sylvester (1985), Eq. (5), with a linear 

interpolation between Recrit = 2200 and Returb = 3000 for the transition 

region: 

 

 ,3000 ,2200 ,2200
8250

3.75
Re

turb lam lam   
 

    
 

  (6) 

 

Churchill (1977) proposed an explicit correlation for straight pipes 

with an arbitrary roughness, 
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with coefficients A and B defined as follows: 
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This correlation is implemented in the thermal-hydraulic system 

code TRACE as shown in U.S.NRC (2007; p. 172). 

 
 

Fig. 2 Friction factors for straight pipes with a relative roughness of  

ε/d = 0, 5.5×10-4 and 1.8×10-3, calculated by different 

correlations. 

Zanke (1993) derived an explicit correlation for the turbulent 

friction factor, λturb, which deviates only up to 0.25% from the 

Colebrook correlation, Eq. (4). Furthermore, he defined the transition 

region as 2320 < Re < 4000 and derived a function, Pturb, for the 

probability that the flow is turbulent. Both the correlation and the 

probability function were slightly reformulated by Zanke (1996) as 

presented in Eqs. (9) and (10). 
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 exp exp 6.75 0.0025Re 1turb lamP P         (10) 

 

The friction factor is defined as a linear combination of the 

laminar and the turbulent values, weighted by their respective 

probabilities: 

 

 1 turb lam turb turbP P        (11) 

 

Fig. 2 shows the friction factors as a function of Reynolds number 

as calculated by the correlations above. The two curves for a relative 

roughness larger than zero refer to a pipe with 0.027 m inner diameter 

and absolute roughness values of ε = 0.015 mm and ε = 0.05 mm. In the 

transition region the interpolation used in RELAP5 and the correlation 

of Churchill (1977) are practically identical. 

1.3 Fully developed flow in smooth helical tubes 

Helical tubes as shown in Fig. 3 are characterized by the inner diameter, 

d, of the tube, the diameter, DH, of the helix, and the pitch, h. 

DH

d

h

 
Fig. 3 Helical tube with helix diameter, DH, inner tube diameter, d, and 

pitch, h. 

 

In his article about pressure loss in helical tubes Gnielinski (1986) 

expressed the diameter, D, of the tube curvature, as function of the helix 

diameter, DH , and the pitch, h: 
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In most cases the ratio of helix diameter and pitch, h/DH, is far 

below 0.3 so that in practice no distinction is made between curvature 

and helix diameter. The constant change of flow direction in helical 

tubes causes a secondary flow, which results in additional friction. On 

the other hand, this secondary flow has a damping effect on turbulence 

so that laminar flow can persist up to higher Reynolds numbers 

compared to straight pipes. The critical Reynolds number is given by 

Schmidt (1967) as follows: 
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Based on experiments with hydraulically smooth plastic tubes and 

diameter to curvature ratios, 0.003 ≤ d/D ≤ 0.15, Mishra and Gupta 

(1979, Eq.5 and Eq.10) derived friction factor correlations for laminar 

and turbulent flow, valid for Reynolds numbers up to Re = 105. These 

correlations were reformulated by Gnielinski (1986) as presented in Eq. 

(14) and Eq. (15). The friction factor for laminar flow is a function of 

the Dean number, De: 
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The friction factor for turbulent flow in the range  

Recrit,H < Re < 105 is, 
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For the limit of infinite curvature, the laminar friction factor, Eq. 

(16), reduces to the laminar friction factor, Eq. (2), for straight pipes, 

while the friction factor for turbulent flow, Eq. (15), reduces to the 

Blasius correlation, Eq. (3). The contribution of secondary flow to the 

pressure loss depends on both the Reynolds number and the curvature, 

D, of the helix. Fig. 4 shows a series of lines for curvature values, 

calculated with Eqs. (13), (14) and (15). Discontinuity between laminar 

and turbulent regions is illustrated, as well as the shift of the transition 

region to higher Reynolds numbers and the increase of friction factors 

as the diameter of curvature decreases. 

 
 

Fig. 4 Laminar and turbulent friction factors for different ratios of pipe 

diameter, d, and curvature diameter, D. 

2. DERIVED EQUATION FOR HELICAL TUBES WITH 

ARBITRARY ROUGHNESS 

Based on the following two hypotheses, the correlations of  Mishra and 

Gupta (1979) can be extended for helical tubes with arbitrary 

roughness: 

 The effect of roughness on pressure loss in helical tubes is the 

same as with straight pipes. 

 By replacing the critical Reynolds number for pipe flow, 

Recrit, with the critical Reynolds number for curved tubes, 

Recrit,H, Eq. (10), can be adapted to describe the probability of 

turbulent flow in helical tubes. 

 

In order to model the limit of infinite curvature, the laminar 

friction factor is generalized as follows: 
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The correlation for the turbulent friction factor, Eq. (15), is 

modified by replacing the leading term, 0.3164/Re0.25, with the 

correlation of Zanke (1996), Eq. (9): 
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The numbers in the probability function, Eq. (10), are replaced by 

constants a and b: 

 

 exp exp Re 1turb lamP a b P          (18) 

 

It is thus possible to adjust the location of the transition region as 

required. Fig. 5 shows the friction factors in the transition region 

calculated by the correlations of Churchill (1977), (U.S.NRC 2001), 

and Zanke (1996) using constants a and  b as listed in Table 1. 

 

 Table 1 Constants within the probability function, Eq. (18), for 

turbulent flow and the associated transition range. 

Source Transition range a [-] b [-] 

Zanke (1996) 2320 < Re < 4000 6.75 0.0025 

Zanke (1996) adapted 2200 < Re < 3000 10.45 0.0043 

 

Fig. 5  Friction factors in the transition region for straight, smooth 

pipes, calculated by different correlations. 

The transition region defined by the probability function, Eq. (18), 

is shifted to the transition region for helical tubes using the ratio of the 

critical Reynolds numbers Recrit and Recrit,H : 
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Fig. 6 shows the probability for turbulent flow for straight pipes 

and for a helical tube with a curvature diameter of 0.9 m and a tube 

diameter of 0.0272 m. 

The friction factor for helical tubes with a circular cross section, 

Eq. (20), is calculated analogously to straight pipes, using the respective 

probability function and the friction factors for laminar and turbulent 

flow: 

 

 , , , ,1H turb H lam H turb H turb HP P       (20) 

 
 

Fig. 6 Probability for turbulent flow in a straight pipe and in a helix 

with d = 0.0272 m and D = 0.9 m. 

Fig. 7 shows the friction factors for a helical tube with 0.0272 m 

tube diameter and a curvature diameter of 0.9 m. The probability of 

turbulent flow is calculated by Eq. (18) using the parameters a = 10.45 

and b = 0.0043. In the limit of infinite curvature the friction factors for 

any helical tube reduces to the friction factor for straight pipes. 

 
 

Fig. 7  Friction factor for a helical tube with 0.027 m tube diameter and 

0.9 m curvature diameter. 
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3. DISCUSSION 

3.1  Range of application 

The new correlation, Eq. (17), was derived by replacing the Blasius pre-

factor, Eq. (3), of the original correlation, Eq. (15), by the correlation of 

Zanke (1996) which can be used up to Re = 108. However, as the 

following discussion shows, it is not advisable to extend the range of 

application to Reynolds numbers above Re = 105, which is the upper 

limit of the experimental range covered by Mishra and Gupta (1979): 

Above a certain Reynolds number, which depends on the relative 

roughness, ε/d, the friction factor for a straight pipe becomes constant. 

One would expect the same characteristics with helical tubes, as stated 

by Zhao et al. (2016, p. 533). However, evaluation of Eq. (17) shows an 

increase of friction factor above Re ≈ 3 × 105 for ε/d = 5.5 × 10-4 and 

above Re ≈ 105 for ε/d = 1.8 × 10-3, as can be seen in Fig. 7. This is due 

to the second term in Eq. (17) which characterizes the influence of 

curvature. However, there is no experimental data available to justify 

application of the correlation above Re = 105. It is therefore suggested 

to limit the application range of Eqs. (16) and (17) to the range of 

values shown in Table 2. 

 

Table 2 Application range of Reynolds number, relative roughness 

and diameter/ curvature ratio. 

Reynolds number Re ≤ 105 

Relative roughness 0 ≤ ε/d ≤ 1.8 × 10-3 

Diameter/curvature ratio 0 ≤ d/D ≤ 0.15 

 

3.2 Uncertainty of friction factors for smooth helical tubes 

In accordance with the procedure of many authors including Zigrang 

and Sylvester (1985), Brkic (2011), and Winning and Coole (2013), the 

Colebrook-White correlation is taken as a benchmark against which all 

other correlations for straight pipes are tested. The deviation of the 

Blasius correlation from the Colebrook-White formula for hydraulically 

smooth pipes shown in Fig. 8 (continuous line) can be interpreted as 

error. On the other hand, Mishra and Gupta (1979) correlated their 

experimental data using the Blasius correlation. Consequently, their 

correlation can be taken as a benchmark for smooth helical tubes in a 

similar way. Replacing the Blasius pre-factor by the correlation of 

Zanke (1996), and comparing it to Eq. (17), will lead to an error of the 

same magnitude, which is also shown in Fig. 8 (dashed line). 

 
 

Fig. 8 Relative friction factor differences for smooth, straight pipes and 

a smooth helical tube with d = 0.027 m and D = 0.9 m. 

3.3 Effect of tube cross section deformation on pressure loss 

Mishra and Gupta (1979) eliminated systematic errors of their 

experimental setup and the uncertainty of the pipe dimensions by 

measuring the pressure drop in straight and coiled configurations of the 

same pipe. They assumed the effect of cross section deformation due to 

bending forces negligible. In order to assess the validity of their 

assumption and to compare the magnitude of this effect to the 

uncertainty discussed in Section 3.2 the relative change of pressure loss 

as a function of small deformation is estimated as follows:  

Small deformations of an initially circular cross section with 

radius, r, due to bending forces can be approximated by an ellipse 

characterized by the semiminor and semimajor axes, a and b. The 

deformation, c, is defined as c = r – a, and the relative deformation as   

δ = c/r. The relative deformation is assumed to be in the range of 0 < δ 

≤ 0.1, as shown in Fig. 9. 

a

b

c

r

p

δ = c/r = 0.1

 
Fig. 9 Deformation of a circular cross-section into an ellipse. 

For small deformations of a thin-walled pipe the wetted perimeter, 

P, can be considered constant. The semimajor axis, b, can be calculated 

iteratively using the approximation of the perimeter length by 

Ramanujan (Hardy et al. 1962; p.23-39), Eq. (21). 
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  (21) 

 

This can be further simplified with the approximation, c ≈ b – r, 

which results in an error relative to the above-mentioned iterative 

approach of less than 0.5 % within the range considered here. 

With this approximation the cross section of the deformed tube 

becomes Aδ = πab ≈ πr2(1– δ)(1+δ) = πr2(1– δ2). Turbulent momentum 

transfer perpendicular to the flow direction causes a rather flat velocity 

profile and a practically homogeneous distribution of wall shear stress 

within a thin boundary layer along the perimeter. Therefore, the suitable 

scaling length is the hydraulic diameter, 

 

4
h

A
d

P

  ,  (22) 

 

which replaces the inner diameter in the turbulent friction factors for 

circular tubes. For other shapes of cross section, different definitions of 

the characteristic length are better suited (Duan et al. 2012). 

In the case of laminar flow, however, wall shear along the 

perimeter of non-circular ducts is not uniform because the velocity 

gradient at the boundary depends on the velocity field of the whole 

cross section. Therefore, using the hydraulic diameter as the 

characteristic length in laminar friction factors for circular tubes will 

lead to errors. Based on the work of Karas (1959), Brauer (1971) 

derived a correction function, φ, for the laminar friction factor which is 

valid for 0 ≤ μ ≤ 1: 

 

 , ; 1.12 0.12cos 2.9lam lam       (23) 
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For small deformations δ = c/r ≤ 0.1 the ratio, μ, as defined in Eq. 

(21), can be replaced by the relative deformation δ. Substituting the 

hydraulic diameter for the pipe diameter yields the Reynolds number in 

terms of volumetric flux, Q, and wetted perimeter, P, 

 

4 4
Re hwd QA Q

A P P



  
    ,  (24) 

 

which is independent of the deformation. 

For a given volumetric flux, constant fluid properties and small 

deformations δ < 0.1, the laminar and the turbulent friction factors,  

Eqs. (16) and (17), can be considered constant. Thus, the pressure 

losses for laminar and turbulent flow are inversely proportional to the 

cube of the flow area and, in the case of laminar flow, proportional to 

the correction function, Eq. (23). 
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The relative changes of pressure loss due to deformation are 
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Fig. 10 shows the influence of relative deformation on the laminar 

and turbulent pressure loss. As long as the relative deformation is below 

0.1 the effect on the laminar and turbulent pressure loss is of the same 

magnitude as the maximum relative difference between the turbulent 

friction factors as shown in Fig. 8 and, therefore, negligible in 

accordance with Mishra and Gupta (1979). 

 
 

Fig. 10 Effect of deformation on the flow area and the laminar and 

turbulent pressure loss. 

4. CONCLUSIONS 

Based on literature and theoretical considerations a correlation for 

the friction factor of helical tubes with arbitrary roughness was derived. 

The correlation is valid for Reynolds numbers up to Re = 105, diameter 

to curvature ratios d/D ≤ 0.15 and relative roughness ε/d ≤ 1.8 × 10-3. In 

the limit of infinite curvature, the correlation reduces to the explicit 

correlation of Zanke (1996) for straight pipes. 

The correlation covers laminar, transitional, and turbulent flow 

regions in a continuous way, thus fulfilling an essential precondition for 

the convergence of numerical schemes for pipe network analysis. 

Furthermore, the proposed correlation is explicit and thus avoids 

computational expense of implicit calculations. For these two reasons, 

the correlation is well suited for implementation into computer 

programs used to simulate and analyze pipe networks. 

At present there is no experimental data for validation available. 

New experiments are necessary to prove the assumption that the effect 

of surface roughness on the pressure loss is the same as with straight 

pipes, and to extend the range of Reynolds numbers to values above  

Re = 105. Furthermore, experiments with different but carefully 

controlled inlet conditions could provide valuable insight into the onset 

of turbulence in the transition region, and thus the means to validate the 

probability function, Eq. (19), for turbulent flow in helical tubes. 
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NOMENCLATURE 

A  flow area [m3] 

Aδ deformed flow area [m] 

a semi minor axis [m] 

b semi major axis [m] 

c deformation [m] 

D curvature diameter [m] 

DH helix diameter [m] 

d inner diameter [m] 

dh hydraulic diameter [m] 

De Dean number [-] 

h  pitch [m] 

l  length [m] 

P  perimeter [m] 

Plam  probability for laminar flow [-] 

Pturb  probability for turbulent flow [-] 

Δp pressure loss [Pa] 

Q  volumetric flux [m3/s] 

Re Reynolds number [-] 

r  radius [m] 

w  average flow velocity Q/A  [m/s] 

Greek Symbols  

δ relative deformation [-] 

δp relative change of pressure loss due to deformation [-] 

ε wall roughness [m] 

λ friction factor [-] 

μ parameter in ellipse perimeter formula [-] 

ν kinematic viscosity [m2/ s] 

ρ density [kg/ m3] 

φ pressure loss correction parameter [-] 

Subscripts 

H helix 

h hydraulic 

δ deformed cross-section 

REFERENCES 

Blasius, H., 1913, "Das Aehnlichkeitsgesetz bei Reibungsvorgängen in 

Flüssigkeiten," In: Mitteilungen über Forschungsarbeiten auf dem 

Gebiete des Ingenieurwesens, 1-41, Springer, Berlin, Heidelberg. 

http://dx.doi.org/10.1007/978-3-662-02239-9_1 



Frontiers in Heat and Mass Transfer (FHMT), 11, 4 (2018)
DOI: 10.5098/hmt.11.4

Global Digital Central
ISSN: 2151-8629

    7 

Brauer, H., 1971, "Grundlagen der Einphasen- und Mehrphasen-

strömungen," Sauerländer, Aarau, Frankfurt a.M.  

Brkic, D., 2011, "Review of Explicit Approximations to the Colebrook 

Relation for Flow Friction,"  Journal of Petroleum Science and 

Engineering, 77 (1), 34-48.  

http://dx.doi.org/10.1016/j.petrol.2011.02.006 

Brown, G. O., 2002, "The History of the Darcy-Weisbach Equation for 

Pipe Flow Resistance," In: Environmental and Water Resources 

History, Washington, D.C., November 3-7 2002, 34-43, American 

Society of Civil Engineers. 

https://doi.org/10.1061/40650(2003)4 

Churchill, S. W., 1977, "Friction-Factor Equation Spans All Fluid-Flow 

Regimes,"  Chemical Engineering, 84 (24), 91-92. 

Colebrook, C. F., 1939, "Turbulent Flow in Pipes, with Particular 

Reference to the Transition Region between the Smooth and Rough 

Pipe Laws,"  Journal of the Institution of Civil Engineers, 11 (4), 133-

156. 

https://doi.org/10.1680/ijoti.1939.13150 

Dean, W., 1928, "LXXII. The Stream-Line Motion of Fluid in a Curved 

Pipe (Second Paper)," The London, Edinburgh, and Dublin 

Philosophical Magazine and Journal of Science, 5 (30), 673-695. 

Dean, W., 1927, "XVI. Note on the Motion of Fluid in a Curved Pipe,"  

The London, Edinburgh, and Dublin Philosophical Magazine and 

Journal of Science, 4 (20), 208-223. 

Draad, A. A., Kuiken, G., Nieuwstadt, F., 1998, "Laminar–Turbulent 

Transition in Pipe Flow for Newtonian and Non-Newtonian Fluids,"  

Journal of Fluid Mechanics, 377, 267-312.  

https://doi.org/10.1017/S0022112098003139 

Duan, Z., Yovanovich, M. M., Muzychka, Y. S., 2012, "Pressure Drop 

for Fully Developed Turbulent Flow in Circular and Noncircular 

Ducts,"  Journal of Fluids Engineering, 134 (6), 061201-061210. 

https://doi.org/10.1115/1.4006861 

Eismann, R., 2017, "Thermohydraulische Dimensionierung von 

Solaranlagen : Theorie und Praxis der kostenoptimierenden 

Anlagenplanung," Springer Vieweg, Wiesbaden. ISBN: 978-3-658-

07124-0. 

https://doi.org/10.1007/978-3-658-07125-7 

Eustice, J., 1911, "Experiments on Stream-Line Motion in Curved 

Pipes,"  Proceedings of the Royal Society of London Series A, 

Containing Papers of a Mathematical and Physical Character, 85 (576), 

119-131. 

Gnielinski, V., 1986, "Correlations for the Pressure Drop in Helically 

Coiled Tubes,"  International Chemical Engineering, 26 (1), 36-44. 

Hardy, G. H., Aiyar, P. S., Wilson, B. M., 1962, "Collected Papers of 

Srinivasa Ramanujan," Chelsea Publishing Company, New York.  

Ito, H., 1959, "Friction Factors for Turbulent Flow in Curved Pipes,"  

Journal of Basic Engineering, 81 (2), 123-134. 

Karas, K., 1959, "Stationäre Laminarströmungen durch Kanäle von 

elliptischem Querschnitt bei konstantem Druck oder statischer 

Druckverteilung,"  Ingenieur-Archiv, 28 (1), 117-153.  

https://doi.org/10.1007/BF00536106 

Mishra, P., Gupta, S., 1979, "Momentum Transfer in Curved Pipes. 1. 

Newtonian fluids,"  Industrial & Engineering Chemistry Process Design 

and Development, 18 (1), 130-137.  

https://doi.org/10.1021/i260069a700 

Mullin, T., 2011, "Experimental Studies of Transition to Turbulence in 

a Pipe,"  Annual Review of Fluid Mechanics, 43, 1-24.  

https://doi.org/10.1146/annurev-fluid-122109-160652  

Schmidt, E. F., 1967, "Wärmeübergang und Druckverlust in 

Rohrschlangen,"  Chemie Ingenieur Technik, 39 (13), 781-789.  

http://dx.doi.org/10.1002/cite.330391302 

U.S.NRC, 2001, "RELAP5/MOD3.3 Code Manual Volume I: Code 

Structure, System Models, And Solution Methods," Division of 

Systems Research, Office of Nuclear Regulatory Research, U. S. 

Nuclear Regulatory Commission, Washington, D. C.  

U.S.NRC, 2007, "TRACE V5. 0 Theory Manual. Field Equations, 

Solution Methods, and Physical Models," Division of Risk Assessment 

and Special Projects, Office of Nuclear Regulatory Research, US 

Nuclear Regulatory Commission, Washington, D. C.  

Winning, H. K., Coole, T., 2013, "Explicit Friction Factor Accuracy 

and Computational Efficiency for Turbulent Flow in Pipes,"  Flow, 

turbulence and combustion, 1-27. 

https://doi.org/10.1007/s10494-012-9419-7 

Zanke, U., 1996, "Zum Übergang hydraulisch glatt: hydraulisch rauh,"  

Wasser und Boden, 48 (10), 32-36. 

Zanke, U., 1993, "Zur Berechnung von Strömungswiderstands-

beiwerten,"  Wasser und Boden, 45 (1), 14-16. 

Zhao, H., Li, X., Wu, X., 2016, "New Friction Factor Equations 

developed for Turbulent Flows in Rough Helical Tubes,"  International 

Journal of Heat and Mass Transfer, 95, 525-534.  

https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.035 

Zigrang, D. J., Sylvester, N. D., 1985, "A Review of Explicit Friction 

Factor Equations,"  Journal of Energy Resources Technology, 107 (2), 

280-283. 

https://doi.org/10.1115/1.3231190 

 


