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Abstract
This paper extends the driving-point signal-flow graphs to switched-capacitor (SC) circuits by introducing a new theo-

retical element: an auxiliary voltage source that transfers no charge. In contrast to existing SFG methods, our method has

no restrictions as to what types of SC circuits can be analysed, it requires no equivalent circuits or tables, and it works with

two-phase as well as multi-phase SC circuits of any complexity. Compared to charge-equation matrix methods, it requires

more effort, but is better suited for hand analysis because it makes causal relationships visible. Three illustrative examples

are given to show the efficiency of the method and present a few application hints: a voltage doubler, the standard SC

integrator, and a four-phase circuit simulating an inductor.

Keywords Switched-capacitor circuits � Signal-flow graph � Driving-point impedance � Multi-phase SC networks �
Circuit analysis

1 Introduction

Switched-capacitor (SC) circuits are analog discrete-time

circuits that consist of switches, capacitors, and amplifiers.

They are as diverse and powerful as they are hard to

analyse. This is mainly so because SC circuits reconfigure

between phases, so they will not have the same topology,

nor even the same number of nodes, in the different phases.

Signal-flow graphs (SFGs) are often used for hand

analysis of circuits (and for teaching), because they make

causal relationships visible and provide insight into a cir-

cuit even before transfer functions are calculated [1–4].

While the SFG analysis of arbitrary continuous-time cir-

cuits is solved, there is no SFG method yet that can be

applied to all SC circuits without restrictions on their

structure or number of phases. In this paper we propose

such an SFG method, compare it to previous SFG method

to highlight the improvement, and compare it to the

established charge-equation method to show that it

describes the same equation systems in a different way.

The DPSFG was introduced in 1998 [5] when Ochoa

combined driving-point impedance techniques with Mason

signal-flow graphs (SFGs) [6, 7]. Ochoa used auxiliary

voltage generators (which we call auxiliary voltage sources

or aux sources) and explained the SFG derivation by first

splitting schematics into sub-circuits and then coupling the

sub-circuits with voltage-controlled current sources.

We cast Ochoa’s method into a different cognitive

framework in [8], making it unnecessary to resort to

intermediate circuit representations and simplifying the

application of the method to the point where no written

material or tables at all are required to use it. This way of

explaining the method followed closely Mason’s original

idea to use SFGs because they ‘‘offer a visual structure, a

universal graph language, a common ground upon which

causal relationships among a number of variables may be

laid out and compared [7]’’. The one-to-one correspon-

dence between circuit and graph also made it straightfor-

ward to derive transposed circuits, as shown in [8].

Concerning SC networks, two groups devised and pub-

lished general analysis methods in parallel. The first pub-

lication used the concepts of nodal analysis on SC circuits
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and also extended classical two-port theory to SC circuits

[9]. In the second publication, the derivation of the matri-

ces is simpler, because it uses a switch matrix that is

straightforward to derive, but since the author does not use

the z transform, but only discrete-time equations with time

indices, the derivations do not result in z transfer functions

[10].

The nodal analysis was then further simplified by using

the indefinite admittance matrix (IAM) in [11] and was

extended to the analysis of multiphase SC networks [12].

Since there is a very close correspondence between signal-

flow graphs and IAMs, SFGs started to be used at that point

in time because, by making causal relationships and signal

flow visible, authors gained more insight into the circuits.

The first comprehensive paper about SFG analysis of SC

circuits was published in 1984 [13], it bases on the theory

introduced in [11] and makes it possible to easily assemble

signal-flow graphs of SC filters by first tabulating basic

building blocks and the corresponding graph parts. This

method was extended to multiphase SC networks [14].

Both [13] and [14] succeed in making the signal flow

visible, but the graphs are not one-to-one maps of the

circuits. Furthermore, the methods only work for source-

sink-node (SSN) networks [14], which means that all nodes

are either at a voltage source or at an amplifier input. Many

circuits, e.g., those doing correlated double sampling and

voltage multiplication, are therefore not covered.

These methods assume from the start that there are no

parasitic capacitors and that the gain of the op-amps used in

the SC circuits is infinite. They cannot possibly analyse the

effect of finite opamp gain on the transfer functions, which

is quite important, as was, e.g., discussed in [15] for SC

integrators.

This was remedied in Chichocki et al. [16] who made it

possible to analyse any SC circuit, with non-ideal op-amps

and also parasitic capacitors. They used a small number of

equivalent z-domain circuits and the Coates flow-graph

technique. In their own words, they ‘‘require a smaller

number of elements than the equivalent circuits previously

proposed’’. But they still require equivalent circuits con-

taining some additional elements.

In a previous paper we applied DPSFGs to the noise

analysis in SC circuits, [17]. In this paper, we introduce a

DPSFG analysis method for SC circuits that requires no

equivalent circuits whatsoever and imposes no restrictions

on amplifier gains, parasitic capacitors, or the number of

clock phases. What results is a general method for visual-

based (i.e., intuitive) analysis of switched-capacitor net-

works of any complexity, with any number of phases.

As in all cited papers, the theory is simple (here it is the

introduction of a new type of auxiliary voltage source). We

want to show that this one intuitive understanding—the

understanding of that new aux source—makes it possible to

analyse continuous-time and switched-capacitor circuits

with the same SFG technique. The purpose of this paper is

to extend and unify SFG analysis and enable SFG users to

tackle all SC circuits as easily as they can treat continuous-

time circuits.

Therefore, we proceed as follow: In Sect. 2, we give a

short introduction to SFGs and DPSFGs of continuous-time

circuits. Our explanation complements [4, 5, 8]; it is

structured such that the introduction of the new theoretical

element is as simple as possible in Sect. 3, where we also

give a minimal example. Section 4 contains the main

example in which we show how to efficiently apply our

method. Section 5 extends this to multi-phase networks

and shows how to calculate a discrete-time input impe-

dance. Finally, in Sect. 6 we show what to do when

graphical evaluation becomes too complicated.

2 Driving-point signal-flow graphs (DPSFG)
of continuous-time circuits

This section presents the DPSFG method introduced in [5],

brought to its present form in [8], and provided as a

sequence of video tutorials in [4].

2.1 Signal-flow graphs and Mason’s gain rule

Mason graphs are just graphical representations of linear

equation systems. The so-called branches are multipliers,

and the so-called nodes are variables. All branches going

into a node are added. Therefore, each node that has

branches going into it describes a linear equation, and the

example shown in Fig. 1 represents the following linear

equation system:

v ¼ auþ fwþ gx;

w ¼ bv;

x ¼ cw;

y ¼ kuþ dxþ hz;

z ¼ ey:

ð1Þ

This can also be expressed in matrix notation:

Fig. 1 Example of a signal-flow graph (SFG) with nodes

u, v, w, x, y, z and path weights a, b, c, d, e, f, g, h, k. This graph

represents a linear equation system with five dependent variables,

v, w, x, y, z, five equations, and one independent variable u

496 Analog Integrated Circuits and Signal Processing (2018) 96:495–507

123



v

w

x

y

z

0
BBBBBB@

1
CCCCCCA

¼

� f g � �
b � � � �
� c � � �
� � d � h

� � � e �

0
BBBBBB@

1
CCCCCCA

v

w

x

y

z

0
BBBBBB@

1
CCCCCCA

þ

a

�
�
k

�

0
BBBBBB@

1
CCCCCCA

u; ð2Þ

where we have simply replaced all numbers 0 by � such that
it becomes immediately apparent that this graph corre-

sponds to a sparse-matrix equation system.

It would be equally simple to take any matrix equation,

e.g., an IAM representation of a circuit, and draw it as a

Mason graph, but that would not necessarily be helpful as it

would then not show the causal relationships.

Equation (2) could now be solved by matrix manipula-

tions, but Mason showed a better way in [7]: A transfer

function from a node u to a node z can be calculated as

T ¼ z

u
¼

P
i Pi Di

D
: ð3Þ

The graph determinant D can be calculated as

D ¼ 1� r1 þ r2 � r3 þ � � � ¼ 1�
X1
1

ð�1Þiri; ð4Þ

where r1 is the sum of all loops, r2 is the sum of products

of 2 loops that do not have nodes in common, and r3 is the
sum of products of 3 loops neither of which have nodes in

common, and so on. The sum (4) can, in principle, go to rN
in a system with N loops, but most feedback systems derive

their special properties from interacting loops, so the sum

often ends soon in practice. In more technical terms,

whenever a matrix representation of the equation system

would be sparse, then Mason’s formula is efficient.

In Fig. 1, we have three loops:

L1 ¼ bf ; L2 ¼ bcg; L3 ¼ eh: ð5Þ

L1 and L2 have nodes in common, but L3 touches neither of

the other loops, so (4) becomes

D ¼ 1� L1 � L2 � L3 þ L1L3 þ L2L3: ð6Þ

The Pi in the numerator of (3) are the forward paths, the

possible ways to get from u to z. The Di are their respective

sub-determinants, which are calculated just like D, but only
using loops that have no nodes in common with the for-

ward path in question.

In Fig. 1, we have two forward paths:

P1 ¼ abcde; P2 ¼ ke: ð7Þ

Path P1 touches all loops, so when calculating the sub-

determinant, all terms containing loops in (6) disappear and

D1 ¼ 1. Path P2 only touches loop L3, so all terms con-

taining L3 in (6) have to be omitted to calculate

D2 ¼ 1� L1 � L2.

Inserting everything into (3) results in

T ¼ abcdeþ ke 1� bf � bcgð Þ
1� bf � bcg� ehþ befhþ bcegh

: ð8Þ

Note that if a different transfer function has to be calcu-

lated (e.g., Ty ¼ y=u), then only the numerator can change,

because D does not depend on the forward paths.

Mathematically, an SFG is just a graphical representa-

tion of an equation system, which can even be manipulated

and simplified graphically [6]. But as Mason stated there, it

can also be used to visualise causal relationships—if it is

drawn in the right way.

2.2 The driving-point signal-flow graph (DPSFG)

The most important aspect of a signal-flow graph that is to

be used for hand analysis is that it maintains and represents

causal relationships. The common tool used in literature is

source superposition, as it is also done when circuit equa-

tions are derived from circuits.

Source superposition will give individual contributions

from all sources to all circuit nodes for the condition that

all other sources are set to zero. So unless there is a voltage

source in every node of a circuit, it is necessary to tabulate

all possible networks that could reasonably appear between

sources and sinks, which invariably means restricting

methods to certain classes of circuits, or to use another

analysis method to derive the individual contributions.

As explained in [8], the DPSFG method solves this

problem by making sure there is a voltage source at every

circuit node. In order to achieve this, the first step in circuit

analysis is to introduce an auxiliary source (aux source) at

every node that does not yet have a voltage source. This

aux source is defined as follows: It produces the voltage

that is already present at a node, and therefore conducts no

current.

To give an example, Fig. 2(a) shows the standard con-

tinuous-time integrator with a resistor having conductance

G and a capacitor having capacitance C, and an opamp

having gain A. Node 1 is connected to the input source,

node 3 to the opamp output, which is also a voltage source,

but there is no voltage source on node 2. Therefore an aux

source is connected to node 2, resulting in Fig. 2(b).

To draw the DPSFG, we can first draw all nodes.

Observe that we also draw the current flowing into the aux

source, I2, in Fig. 3(a).

Then we simply do source superposition, voltage by

voltage. Vin controls V1, and we have Fig. 3(b). V1 lets a

current I2 ¼ GV1 flow, which gives Fig. 3(c). V2 controls

the opamp output as V3 ¼ �AV2, giving Fig. 3(d). V3 lets

a current I2 ¼ sC V3 flow, and it also is the same as Vout,

and we have Fig. 3(e).
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This is almost all, but now we have a problem: I2 is not

zero! The aux source was defined to conduct no current.

However, I2 is not the true current into the source, but the

current flowing into the aux source for V2 ¼ 0: the short-

circuit current of the aux source. So one part of the source

superposition is missing. In order to have zero current

under superposition, we now need to calculate the neces-

sary voltage V2 ¼ Z2 I2 to have I2 flow out of the aux

source when all other sources are set to zero. This is

Fig. 3(f).

This Z2 is the driving-point impedance (DPI) which

gives the DPSFG part of its name. Since we have made

sure that every node now has a voltage source attached, all

of which are set to zero during superposition, this DPI is

always the inverse of the sum of all conductances con-

nected to the node. Here,

Z2 ¼
1

Gþ sC
: ð9Þ

This is all, and it becomes apparent that the result is an

SFG that shows the causality as well as describing the

equation system of the circuit. There is only one loop, and

only one path, which even touches the loop. Therefore:

L1 ¼ �AZ2 sC; ð10Þ

D ¼ 1� L1 ¼ 1þ AZ2 sC; ð11Þ

P1 ¼ �GZ2 A; ð12Þ

D1 ¼ 1; ð13Þ

T ¼ Vout

Vin

¼ P1 D1

D
¼ � GZ2 A

1þ AZ2 sC
� � G

sC
; ð14Þ

where the last approximation is for A ! 1.

Additional things can now be calculated with compar-

atively small effort. For example, what happens if a para-

sitic capacitance Cp is connected to node 2? Then only Z2
changes to

Z2 ¼
1

Gþ sðC þ CpÞ
: ð15Þ

What if we need to know the input admittance? The input

current is Iin ¼ ðV1 � V2ÞG. Drawn as SFG branches, this

gives Fig. 3(g). The only thing that changes are the forward

paths, and we get:

P1 ¼ G; ð16Þ

D1 ¼ D; ð17Þ

Fig. 2 Continuous-time integrator without and with aux source

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 3 The step-wise development of the DPSFG for the circuit in

Fig. 2(b)
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P2 ¼ �G2 Z2; ð18Þ

D2 ¼ 1; ð19Þ

Yin ¼
Iin

Vin

¼ P1 D1 þ P2 D2

D
¼ G� G2 Z2

1þ AZ2 sC
: ð20Þ

For A ! 1, this gives Yin ¼ G, as expected, because then

node 2 is virtual ground.

And this method always works, for every linear circuit.

The only thing that happens for larger circuits is that there

are more aux sources, and of course Mason’s rule becomes

more tedious to evaluate, but the derivation of the branches

is never different from, or more difficult than, what we just

showed. Note, however, that from a didactic point of view,

it can be better to fill in the DPSFG in a different order

(c.f. [4, Chap. 7]).

This method works because the aux sources make

Kirchhoff current-law (KCL) equations appear in the SFG.

We illustrate this by looking at the equations for the aux-

source-related nodes I2 and V2:

I2 ¼ V1 Gþ V3 sC; ð21Þ

V2 ¼ Z2 I2: ð22Þ

We insert (22) into (21), take all sum terms to the same

side, and collect expressions with G and sC:

V1 � V2ð ÞGþ V3 � V2ð Þ sC ¼ 0: ð23Þ

And we see that this is the KCL for node 2.

In summary, the connection of an aux source causes the

KCL equation for that node to appear in the graph. This is

basically why the DPSFG method must work for any linear

circuit.

3 The charge-mode auxiliary source

At this point we are ready to extend the method to SC

circuits. After the lengthy introduction it is clear that (a) SC

circuits reconfigure when the phases change, and (b) if the

proper auxiliary source is chosen, then source superposi-

tion becomes simple and drawing an SFG becomes

straightforward.

Theorem 1 The DPSFG method as introduced in [5], and

as presented without the need to split a circuit into sub-

circuits in Sect. 2, works for all SC circuits with an arbi-

trary number of phases if (a) one circuit diagram per phase

is drawn, with switches shorted or opened, and (b) in each

of those circuit diagrams, auxiliary sources are attached to

all nodes that are not connected to a voltage source. Such

an aux source is defined as follows: It produces the voltage

that is already present at a node, and therefore conducts

no charge.

The validity of this theorem will now be demonstrated

by giving examples. Figure 4 shows an SC voltage doubler,

a simple SC circuit, which nevertheless is not a source-sink

network. The figure shows the circuit with the switches,

and the two circuit configurations in the odd phase

(phase 1) and the even phase (phase 2). We have given all

nodes individual numbers.

Node 1 in the odd phase is at a voltage source terminal,

but nodes 2 and 3 in the even phase are not, so there we

attach aux sources. This time the sources have a voltage

Ve
2;3 and a charge Qe

2;3 that is the charge flowing into the

source while the even-phase circuit settles to its final state.

Now we can construct the DPSFG just as in Sect. 2.2

but by using charges and voltages instead of currents and

voltages. First we write down all nodes of the SFG, in two

rows for the two phases, giving Fig. 5(a). Now source by

source: Vo
in is V

o
1 : Fig. 5(b). If all sources other than Vo

1 are

set to zero, then C1 and C2 are discharged into the aux

sources Ve
2 and Ve

3 .

Observing the respective plates of the capacitors dis-

charged into the nodes, and since this is another phase,

Qe
2 ¼ C2 z

�1 � C1 z
�1ð ÞVo

1 and Qe
3 ¼ �C2 z

�1: Fig. 5(c). If

Ve
2 is switched on and all others are zero, a charge Qe

3 ¼
C2 V

e
2 flows: Fig. 5(d). Similarly, if Ve

3 is switched on and

Fig. 4 Inverting capacitive voltage doubler. Top: circuit with all

switches. Centre: phase 1 (odd). Bottom: phase 2 (even), with aux

sources. (Note: Normally non-inverting doublers are used, but the

inverting-doubler schematic is easier to read and thus better suited to

discuss an analysis method.)
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all others are zero, a charge Qe
2 ¼ C2 V

e
3 flows, and this also

is Ve
out: Fig. 5(e).

As in Sect. 2.2, we now have calculated the short-circuit

charges of the aux sources and need a last step answering

the question: what should the voltage of the aux sources be

such that, under superposition, the aux source conducts no

charge? This gives Fig. 5(f). Before, we got driving-point

impedances in this step, and now we get Se2;3, which are two

driving-point elastances, an elastance being an inverse

capacitance (unit F�1), and obviously

Se2 ¼
1

C1 þ C2

; Se3 ¼
1

C2

; ð24Þ

for the exact same reason why driving-point impedances

have this structure.

Mason’s rule is simple since there is only one loop and

two forward paths that touch the loop:

L1 ¼ Se2C2S
e
3 C2; ð25Þ

D ¼ 1� L1; ð26Þ

P1 ¼ z�1ðC2 � C1ÞSe2C2S
e
3; ð27Þ

P2 ¼ �z�1C2S
e
3; ð28Þ

D1;2 ¼ 1; ð29Þ

T ¼ Ve
out

Vo
in

¼ P1D1 þ P2D2

D
¼ �2 z�1: ð30Þ

This is very straightforward to extend, particularly with an

analysis of parasitic capacitances, which eluded most of the

hitherto presented SFG methods. For example, if a Cp is

attached to node 2, the only thing that changes is Se2 in (24):

Se2 ¼
1

C1 þ C2 þ Cp

: ð31Þ

Then (30) can be calculated again:

T ¼ � 2C1 þ Cp

C1 þ Cp

� z�1: ð32Þ

As with the continuous-time DPSFG in Sect. 2, every

problem could be solved by step-wise source superposition,

but changing the order of how the DPSFG is drawn may

make an analysis quicker and less error-prone.

4 Main example: the SC integrator

This is already all of the theory, but the strength of the

method lies in the systematic application, so it is best

exemplified with a simple (but sufficiently complex) SC

circuit: the stray-sensitive SC integrator in Fig. 6.

In the previous section we just numbered all nodes, but

now we introduce a technique that makes the node numbers

in all phases unique: the nodes are numbered with powers

of 2, i.e., 1; 2; 4; 8; 16; . . ., in the schematic with switches,

Fig. 6 (top). During the derivation of the odd and even

schematics in Fig. 6, nodes of the original circuit are

connected by closed switches, and the number of such a

new node is the sum of the numbers of the nodes

connected.

Since the original numbers were powers of 2, the new

nodes are guaranteed to have unique numbers and contain

local topological information, with the effect that all elas-

tances S
/
i with the same i are the same, irrespective of their

phase /.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5 The step-wise development of the DPSFG for the circuit in

Fig. 4(b)
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4.1 Calculation with charge equations

The circuit in Fig. 6 can now be analysed using charge

equations. The capacitor charges are

Qo
1 ¼ Vo

3C1; Qo
2 ¼ Vo

4 � Vo
8

� �
C2 ð33Þ

in the odd phase and

Qe
1 ¼ Ve

6C1; Qe
2 ¼ Ve

6 � Ve
8

� �
C2 ð34Þ

in the even phase, where Q1;2 is the charge on C1;2 with the

positive plate of the capacitors indicated in Fig. 6.

The amplifier with gain A works in both phases, giving

two equations:

Vo
8 ¼ AVo

4 ; Ve
8 ¼ AVe

6 : ð35Þ

Now it is straightforward to write down the charge dif-

ferences on the capacitors during the phase transitions:

DQe
1 ¼ Qe

1 � z�1Qo
1; DQe

2 ¼ Qe
2 � z�1Qo

2; ð36Þ

DQo
1 ¼ Qo

1 � z�1Qe
1; DQo

2 ¼ Qo
2 � z�1Qe

2: ð37Þ

Then there is charge conservation. In each phase, there are

nodes without voltage sources on them where no charge

can appear or disappear. In the odd phase, this is only

node 4, giving the equation

DQo
2 ¼ 0: ð38Þ

In the even phase, only node 6 has no voltage source

attached, giving one more equation:

DQe
1 þ DQe

2 ¼ 0: ð39Þ

Observe how both DQe
1 and DQ

e
2 are on the same side of the

equation; this is because both capacitor plates connected to

node 6 in the even phase have the same sign on them.

The final step is to specify the input and the output of the

circuit:

Vo
in ¼ Vo

3 ; Vo
out ¼ Vo

8 : ð40Þ

The equation system (33)–(40) can now be solved for Vo
out:

Vo
out

Vo
in

¼ � AC1z
�2

ðAþ 1ÞC2 þ C1 � z�2ðAþ 1ÞC2

� �C1

C2

z�2

1� z�2
for A ! 1:

ð41Þ

Considering that our z�2 means we have one delay from an

odd phase to the next odd phase (see ‘‘Appendix’’), this is

the well-known transfer function of the SC integrator (e.g.,

[15]).

4.2 Calculation with a driving-point signal-flow
graph

The same calculation can now be done with signal-flow

graphs. In this section we show how to do it systematically.

First, auxiliary sources have to be attached to all circuit

nodes that do not already have voltage sources on them.

These are the nodes 4 and 6 in Fig. 7.

Second, a signal-flow graph can be prepared, as shown

in Fig. 8(a). This graph contains the input and output paths,

the amplifying paths, and, in every node where there is an

Fig. 6 Schematics of the simple, stray-sensitive SC integrator. The

top schematic has all the switches; the centre schematic shows the odd

phase 1, and the bottom schematic shows the even phase 2

Fig. 7 Schematics from Fig. 6 with aux sources
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aux source, also an aux-source charge and an elastance

path. The elastances are:

So4 ¼
1

C2

Se6 ¼
1

C1 þ C2

: ð42Þ

Third, all paths due to all voltage sources can be drawn,

leading from Fig. 8(a, b). We will just explain two of these

paths. First, let all voltage sources be zero, and then let Vo
8

be switched to its value. Then the charge C2V
o
8 will flow

into the aux source at node 4, giving a contribution to Qo
4.

This is the path with weight C2 from Vo
8 to Qo

4.

However, this is not the only effect Vo
8 will have,

because in this step of calculating source superposition, all

other voltages are zero, particularly all voltages in the even

phase. The capacitor C2 has now been charged to �C2V
o
8 in

the odd phase (observe the þ sign on the left plate of C2 to

understand why the charge is negative), and in the even

phase it is completely discharged because the voltage is

zero on both sides. Therefore the charge �C2V
o
8 flows into

the aux source at node 6. Since this is after a phase change,

we get a path �z�1C2 from Vo
8 to Qe

6.

All other missing paths can then be found by applying

the same method to Vo
3 , Vo

4 , Ve
6 , and Ve

8 , and then the

DPSFG is complete.

Finally, it would already be possible to apply Mason’s

gain rule, and if our only goal were to get a transfer

function as quickly as possible, then we would stop here.

However, using one of the graphical simplification meth-

ods mentioned in Sect. 2, Fig. 8(b) can readily be re-drawn

as Fig. 9. Then a term C2ðAþ 1Þ appears, and it becomes

visible in the graph already that C2 is subject to the Miller

effect.

The graph in Fig. 9 has only three loops:

L1 ¼ �ASo4C2; L2 ¼ �A Se6C2; ð43Þ

L3 ¼ So4z
�1C2ðAþ 1ÞSe6z�1C2ðAþ 1Þ: ð44Þ

According to Mason’s gain rule, the graph determinant

becomes

D ¼ 1� L1 � L2 � L3 þ L1L2: ð45Þ

Note that the term L1L3 does not appear, because Loop 1

and Loop 3 have nodes in common, and the same is true

for L2L3.

There is one path from Vo
in to Vo

out,

P1 ¼ z�1C1S
e
6z

�1C2ðAþ 1ÞSo4ð�AÞ; ð46Þ

and since this path touches all three loops, its sub-deter-

minant D1 ¼ 1.

With this information, the transfer function of the circuit

can be calculated as

Vo
out

Vo
in

¼ P1D1

D
; ð47Þ

which, of course, gives the same result obtained in (41).

As before, calculating the effects of parasitic capacitors

would be simple with this method as they would only

change the elastance equations (42).

4.3 Comparison of the two methods

This DPSFG method gives a direct, graphical way to draw

a graph from a circuit and solve it using Mason’s gain rule.

What remains to be shown now is how the two methods

relate.

In the classical method, we wrote down charge conser-

vation equations at all nodes where there were no voltage

sources. In the DPSFG method, we introduced aux sources

to all nodes where there were no voltage sources. So it

(a)

(b)

Fig. 8 DPSFG derived from Fig. 7; a shows the first step, b the

complete graph

Fig. 9 DPSFG derived from Fig. 8(b) by graphical simplification. In

Fig. 8(b), there were two ways to go from Vo
4 to Qe

6, one had the

weight z�1C2, the other the weight A z�1C2. Their sum is

z�1C2ðAþ 1Þ, which is the path from Vo
4 to Qe

6 in this SFG. The

same was done for the path from Ve
6 to Qo

4
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stands to reason that the SFG branches pertaining to the

aux-source nodes should be charge conservation equations,

just as they were KCL equations in the continuous-time

case.

Proof for (39): First, substitute (36) into (39):

Qe
1 � z�1Qo

1 þ Qe
2 � z�1Qo

2 ¼ 0 ð48Þ

Now substitute (33) and (34) into (48):

Ve
6C1 � z�1Vo

3C1 þ Ve
6 � Ve

8

� �
C2

� z�1 Vo
4 � Vo

8

� �
C2 ¼ 0:

ð49Þ

This can be re-ordered as follows:

Ve
6ðC1 þ C2Þ ¼ z�1C1V

o
3 þ C2V

e
8

þ z�1C2V
o
4 � z�1C2V

o
8 :

ð50Þ

Now let us look at Fig. 8(b), at the DPSFG branch from Qe
6

to Ve
6 . It has the weight Se6, which corresponds to the

equation

Ve
6 ¼ Se6Q

e
6: ð51Þ

Substituting (42) into this and solving for Qe
6 gives:

Qe
6 ¼ Ve

6ðC1 þ C2Þ: ð52Þ

This can now be used together with (50) to calculate Qe
6:

Qe
6 ¼ z�1C1V

o
3 þ C2V

e
8

þ z�1C2V
o
4 � z�1C2V

o
8 ;

ð53Þ

and it is immediately apparent that this is the equation

obtained from adding all branches going into the node Qe
6

in the DPSFG.

In summary, the connection of an aux source causes the

charge conservation equation for this node to appear in the

graph. This is why the method will work for any SC circuit

operating with voltage settling and charge transfer.

5 Second example: multi-phase SC networks
and discrete-time input impedance

The real power of this method lies in the fact that it only

uses very basic principles, and therefore can be applied to

any switched-capacitor circuit that works with settling and

charge transfer. We will now demonstrate this using the

simulated inductor in Fig. 10. This circuit does not only

have four phases, but it requires the calculation of the input

charge difference DQin that the input source Vin has to

provide.

The first step is to draw the circuit in its four phases; we

call them a, b, c and d instead of e and o. This is shown in

Fig. 11.

Drawing the DPSFG can be done as before: first, we

draw the graph in Fig. 12(a) by observing the source

superposition theorem in all four phases individually, and

then we obtain Fig. 12(b) by inserting the paths showing

charge transfer between the phases.

The elastances on the branches of Fig. 12 are:

Sa4 ¼ Sc4 ¼ Sd4 ¼ ðC2Þ�1; ð54Þ

Sb6 ¼ ðC0 þ C2Þ�1; ð55Þ

Sb16 ¼ Sc16 ¼ ðC1Þ�1; ð56Þ

Sd18 ¼ ðC0 þ C1Þ�1; ð57Þ

and as explained in Sect. 4, all elastances with the same

index number are the same, even if they are in different

phases.

Two more things should be noticed when going from

Fig. 12(a, b): first, we have applied the simplification

demonstrated in Fig. 9, which is why the integrating

capacitor C2 gives rise to four paths with the weight

ð1þ AÞz�1C2. Second, the input charge DQin has two

contributions. At the beginning of phase a, the charge of C0

is C0V
d
18. At the end it is C0V

a
2 . The charge DQin that has to

be supplied by the voltage source is therefore

DQin ¼ C0V
a
2 � z�1C0V

d
18: ð58Þ

This gives the two branches from Vd
18 and from Va

2 to DQin,

and the signal-flow graph is complete.

At this point we can evaluate Mason’s gain rule: There

is one loop each in each of the four phases, and one big

loop going through everything:

L1 ¼ Sa4 ð�AÞC2; ð59Þ

L2 ¼ Sb6 ð�AÞC2; ð60Þ

L3 ¼ Sc4 ð�AÞC2; ð61Þ

L4 ¼ Sd4 ð�AÞC2; ð62Þ

L5 ¼ Sa4 S
b
6 S

c
4 S

d
4 ð1þ AÞz�1C2

� �4
: ð63Þ

The graph determinant is:

D ¼ 1� L1 � L2 � L3 � L4 � L5

þ L1L2 þ L1L3 þ L1L4 þ L2L3 þ L2L4 þ L3L4

� L1L2L3 � L1L2L4 � L2L3L3

þ L1L2L3L4:

ð64Þ

There are three forward paths,

P1 ¼ C0; ð65Þ
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P2 ¼ z�1C0 S
b
6 ð1þ AÞz�1C2

� �
Sc4 ð�AÞ

� z�1C0 S
d
18 �z�1C0

� �
;

ð66Þ

P3 ¼ z�1C0 S
b
6 S

c
4 S

d
4 S

a
4 ð1þ AÞz�1C2

� �3 ð�AÞ

� z�1C1 S
b
16 S

c
16 S

d
18 z�1C1

� �2 �z�1C0

� �
;

ð67Þ

with the respective sub-determinants

D1 ¼ D; ð68Þ

D2 ¼ 1� L1 � L4 þ L1L4; ð69Þ

D3 ¼ 1: ð70Þ

Now it is possible to compute the discrete-time input

admittance, which has the unit F, as follows:

Yin ¼
DQin

Vin

¼ P1D1 þ P2D2 þ P3D3

D
ð71Þ

¼ P1 þ
P2D2 þ P3D3

D
; ð72Þ

Fig. 10 A four-phase SC circuit: the simulated inductor from [16,

Fig. 4]

(a)

(b)

(c)

(d)

Fig. 11 The circuit from Fig. 10 shown in its four phases (called a, b,

c, and d, from top to bottom)

(a)

(b)

Fig. 12 The DPSFGs derived from Fig. 11. Graph a shows the

portions of each graph derived from the individual phases, b adds the

paths for charge transfer between phases and for calculating the input

charge according to (58)
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the latter line comes from the fact that D1 ¼ D.
Substituting (54) to (70) into (72) gives a rather com-

plicated expression, which we will not reproduce here. In

[16], the whole calculation is made for A ! 1; if we do

this as well, we get

Yin ¼ C0 1þ C0 z
�4

C2 C0 þ C1ð Þ
C0 þ C1 z

�4

1� z�4

� �
; ð73Þ

which is the same as Eq. (15) in [16]. This acts like a

discrete-time simulated inductor for a specific choice of

capacitor ratios: Inserting C1 ¼ C0=3 and C2 ¼ C0=4 into

(73) gives

Yin ¼ C0

1þ z�4ð Þ2

1� z�4
: ð74Þ

Since this is a four-phase system which only samples the

input at phase 1, this corresponds to

Yin ¼ C0

1þ z�1ð Þ2

1� z�1
: ð75Þ

relative to phase one (see ‘‘Appendix’’). As expected for an

inductance, the admittance has one pole at z ¼ 1 (which

corresponds to f ¼ 0).

6 When Mason is too difficult...

The example in the previous section resulted in a very

complicated and tedious evaluation of Mason’s gain rule.

Clearly, this example is at the border of what is reasonably

calculatable by hand.

Note, however, that this only concerns Mason’s rule. We

can still use the DPSFG method to obtain a correct graph

that corresponds to the circuit diagram (which makes it

easily reviewable), but then use a computer algebra tool

(Mathematica, Python/NumPy/SciPy,...) to actually evalu-

ate the equation system.

Such a computation entails listing the dependent vari-

ables, listing all equations (one per node), and then solving

the equations and substituting the elastances.

This can easily be done for the graph in Fig. 12, but we

will show the script for the graph in Fig. 9 such that it is

more instructive to the reader. In Mathematica1 notation,

this would be:

A brief explanation: In Mathematica, = is an assign-

ment, == an equality, -[ a substitution rule, and the

operator /. performs substitutions. The solution sols

consists of one substitution rule for every dependent vari-

able. Therefore, the last line calculates the transfer function

voo/vio, substitutes the solution for voo and then the

elastances elast, takes the limA!1 , and finally simpli-

fies. The result of this code is:

This is evidently the same as (41).

7 Conclusions

In this paper, we have adapted the driving-point signal-flow

graphs (SFGs) to switched-capacitor circuits by one main

modification: we have exchanged the zero-current auxiliary

source by a zero-charge aux source. This let the driving-

point impedances become driving-point elastances.

We have demonstrated the application of the method by

examples, in which we also showed a few tricks helping

simplify the analysis even further, and have shown by

argument that this method is applicable to any SC circuit

relying on charge transfer just as the original method is

applicable to any linear continuous-time circuit.

Therefore, we have unified the SFG analysis method-

ology for continuous-time and SC circuits. Our method

only requires that the users remember Mason’s gain rule

and understand source superposition and the aux source.

Written material like tables of partial transfer functions,

equivalent circuits, etc., are unnecessary. In this respect our

method is unique among graph-based SC analysis methods.

Of course, the same analysis can be done by deriving

and solving charge equations, which would give the same

1 Note that at the time we write this paper, Mathematica is available

on the cheap Raspberry Pi computers for free, and calculations such

as the ones described here do not take much computation time even

on such a comparatively slow computer.
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symbolic results with fewer steps and more quickly using a

computer algebra tool. The graph method, however,

maintains causal relationships and makes them visible, and

when studying and comparing different SC structures, this

insight is often worth the additional effort.

While the last example gave a very complicated graph

determinant and is at the limit of what can be done by hand

(in fact, we, the authors, evaluated Mason’s rule using

Mathematica to be sure we do not make stupid mistakes),

the one-to-one correspondence makes it straightforward to

review a drawn SFG versus its circuit. It is uncommon with

this method that an equation is omitted, and near impos-

sible to introduce redundant equations, which is something

that everyone who has analyzed circuits by hand using

equations knows all too well.

Using Mason’s gain rule to derive transfer functions can

give more insight into a circuit, but if evaluating Mason’s

rule becomes too complicated, then calculating transfer

functions from a signal-flow graph can also be done

directly by entering the euqations into a computer algebra

tool.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix

In most papers cited in this paper, the z transform is used to

describe discrete-time transfer functions, but there are

different ways in literature to do this. A discrete-time

integrator with delay has the transfer function

TðzÞ ¼ z�1

1� z�1
: ð76Þ

If this is achieved with a two-phase SC circuit like the one

in Fig. 6 that measures the input and provides the output in

phase 1 (the odd phase) and integrates in phase 2 (the even

phase), then there are three different ways to use the z

transform: (a) assign no delay between odd and even phase,

and z�1 between even and next odd phase; (b) assign z�
1
2 to

both phase transitions; (c) assign z�1 to both phase

transitions.

(a) and (b) are often used in teaching, because (c) has the

disadvantage that the integrator in Fig. 6 then looks like

TðzÞ ¼ z�2

1� z�2
: ð77Þ

In general, to compare a z transfer function of an n-phase

SC circuit to a standard z transfer function, all terms z�n

have to be replaced by z�1 in the end.

Method (c) is the mathematically soundest of the three

and the easiest to apply to multiphase circuits, and is

therefore used in most theoretical papers, including this

one.
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