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Abstract
Mathematical literacy (ML) is considered central to the application of mathematical
knowledge in everyday life and thus is found in many comparative international educa-
tional standards. However, there exists barely any evidence about predictors and out-
comes of ML having a lasting effect on achievement in nonmathematical domains. We
drew on a large longitudinal sample of N = 4001 secondary school students in Grades 5 to
9 and tested for effects of ML on later academic achievement. We took prior achievement
in different domains (information and communication technology literacy, scientific
literacy, reading comprehension, and listening comprehension), socioeconomic status,
and gender into account and investigated predictive effects of math grade, mathematical
self-concept, reasoning, and prior achievement on ML. Using structural equation models,
we found support for the importance of integrating multiple predictors and revealed a
transfer effect of ML on achievement in different school domains. The findings highlight
the importance of ML for school curricula and lasting educational decisions.
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Introduction

Learning mathematics is oftentimes assumed to be learning for everyday life. We share this
assumption and frame it in educational standards. According to the Program for International
Student Assessment (PISA; Organisation for Economic Co-operation and Development
(OECD) 2019), Mathematical literacy (ML) is defined as “an individual’s capacity to formu-
late, employ, and interpret mathematics in a variety of contexts.” The importance of ML as an
element in the definition of educational standards has been made apparent in, for example, the
USA and Germany (National Council of Teachers of Mathematics 2003; Standing Conference
of the Ministers of Education and Cultural Affairs of the Federal Republic of Germany 2004).
ML is crucial for students’ understanding of mathematics in today’s life contexts (Baumert
et al. 2007).

International educational studies such as PISA and the Trends in International Mathematics
and Science Study (TIMSS) aim to assess students’ ML by having them solve everyday
problems with mathematical means (Mullis et al. 2009; OECD 2003). Researchers have
investigated the development of ML by using large-scale longitudinal studies, for instance,
in Germany, PISA studies (PISA Plus 2012–2013: OECD 2013; PISA-I-Plus: Prenzel 2006),
and by conducting national studies, for instance the COACTIV1 research program (Kunter
et al. 2013), the Study of Initial Achievement Levels and Academic Growth in Secondary
Schools in the City of Hamburg (e.g., Caro and Lehmann 2009), and the longitudinal Element
study (Lehmann and Nikolova 2007).

This large body of research investigating predictors and outcomes of ML has generated
partly contradictory results. Among others, prior achievement, migration, and social back-
ground (Kiemer et al. 2017), socioeconomic status (Caro and Lehmann 2009), self-efficacy,
self-concept, interest, and learning goals (Kriegbaum et al. 2015) were identified as relevant
predictors of ML. For the relationship between ML and achievement in other domains, such as
reading, studies using longitudinal data found covariation effects in Grades 1 to 7 (Korpipää
et al. 2017) and predictive effects of third-grade reading comprehension on ML throughout
early primary school when controlling for prior achievement (Grimm 2008).

Hence, ML is also thought to determine later academic achievement in many ways (cf.,
Duncan et al. 2007; Gut et al. 2012; Siegler et al. 2012). In the context of solving realistic
problems, studies on mathematical word problems, mathematical modeling competence, and
mathematical problem-solving in general showed that predictors such as calculation skills,
mathematical self-concept, reading comprehension, and cognitive skills are relevant for ML
development and the relationship to later achievement (Blum and Borromeo Ferri 2009;
Brown and Stillman 2017; Leiss et al. 2010; Leutner et al. 2012; Phonapichat et al. 2014).
Studies on mathematical modeling, which is typically considered a cognitive process
consisting of different phases of solving a real-world problem by means of mathematics,
showed that reading comprehension, cognitive skills, and self-concept are important predictors
of problem-solving success (Jensen 2007; Leiss et al. 2010; Maass 2006).

However, as argued in a recent study on teaching practice in ML (Kuger et al. 2017), the
influence of single predictors is often overestimated, especially in cross-sectional analyses.
Therefore, longitudinal studies that take various predictors comprehensively into account are
necessary. Furthermore, the empirical support that does exist for predictors and outcomes of

1 COACTIV is the abbreviation for the Professional Competence of Teachers, Cognitively Activating Instruc-
tion, and Development of Students’ Mathematical Literacy project.
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ML is mostly restricted to early primary school (e.g., Grimm 2008; Korpipää et al. 2017) or
tertiary education (e.g., Hwang and Riccomini 2016; Pape andWang 2003; Sokolowski 2015).
Only a few studies are related to secondary school (Caro and Lehmann 2009; Kriegbaum et al.
2015). Hence, we argue that longitudinal studies across secondary school are needed to
examine the influence of ML on later academic achievement while at the same time taking
its crucial predictors into account.

Theoretical background of ML

The relationship between ML, reading, and achievement in other domains

We understand academic achievement as achievement in different school domains, for
instance, mathematics, language, and science. Achievement in most studies is either opera-
tionalized as grade point average (GPA) or assessed with achievement tests in the respective
domain, sometimes by using multiple-domain tests such as the Wide Range Achievement Test
(Wilkinson 1993), the California Achievement Test, or the Stanford Achievement Test (e.g.,
Sirin 2005). In line with studies on the development of problem-solving competence, we argue
that fostering ML results in higher achievement in other domains later on (Leutner et al. 2012).
Later academic achievement is assumed to be linked with success in mathematical tasks,
because a strong relationship has been found with mathematical performance in general
(Duncan et al. 2007).

Recent research on the covariation of ML and reading achievement indicated that gains in
ML-related skills such as problem-solving and reasoning as well as cognitive abilities in
general lead to better achievement in other domains (Baumert et al. 2012). The authors
suggested the cumulative advantage effect (DiPrete and Eirich 2006) as a possible explanation.
Additionally, a transfer effect can be assumed; ML involves skills that are shared with other
processes, such as reasoning and general cognitive abilities, so gains in ML will support
students’ progress in other achievement domains. A study comparing adults with PISA
students showed that the average ML in adults was on the level of a secondary school student
(Ehmke et al. 2005). These authors also showed that ML in adults was linked to an individual’s
vocational degree. However, research on mathematical modeling mainly focused on distinct
phases of the problem-solving process (Baumert et al. 2007; Blomhoj and Jensen 2003; Blum
et al. 2004; Jensen 2007; Leiss and Tropper 2014). Intervention studies have shown that
teaching students to construct a situational model of a problem given in text or pictorial form
improves their ability to solve mathematical problems (English and Watters 2005; Hwang and
Riccomini 2016; Kaiser et al. 2015; Schukajlow et al. 2015). This seems to be especially
relevant for students with difficulties in learning mathematics (Phonapichat et al. 2014).

With respect to achievement in other domains, a meta-analysis on applying mathematical
modeling to support students’ mathematical knowledge acquisition at the high school and
college level found positive effects of mathematical-modeling techniques on achievement in
different content domains (Sokolowski 2015). Hoffman and Spatariu (2008) examined influ-
ences on problem-solving efficiency and found middle to high cross-sectional correlations
between GPA and performance on a math achievement test as well as between GPA and
problem-solving efficiency. When predictors such as reading competence and self-concept
were considered using path analysis, lower coefficients were found (Schommer-Aikins et al.
2005). Jordan et al. (2002) showed longitudinally that over 2 years, growth in reading
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competence was diminished for children with difficulties in mathematical problem-solving.
This, again, accounts for the assumption that ML affects achievement in other domains.
Moreover, Korpipää et al. (2017) found that reading and arithmetic in Grades 1 to 7 covaried
substantially over time.

In summary, reported covariations of ML and achievement in other domains (Jordan et al.
2002; Korpipää et al. 2017; Sokolowski 2015) as well as a relationship between ML and gains
in general cognitive abilities (Baumert et al. 2012) hint at common elements in ML and skills
relevant to various school domains. This leads to assuming transfer effects of ML on academic
achievement. Current research on the relationship between ML and academic achievement is
barely conclusive because important predictors remain unconsidered. The necessity for
research that takes an integrative view of ML that considers comprehensive predictors and
outcomes using longitudinal data is evident.

The role of predictors of ML

A longitudinal study from Chu et al. (2016) on the development of ML that followed
children’s gains in reading and mathematics achievement while also assessing preliteracy
knowledge, intelligence, executive functions, and parental educational background identified
all variables assessed as being predictive for children’s ML from preschool to kindergarten.
The authors concluded that a combination of domain-general and domain-specific abilities
plays an important role in ML development. Using a large sample (N = 6020) of 15-year-old
German PISA students, Kriegbaum et al. (2015) showed that besides task-specific self-
efficacy, intelligence and prior achievement predicted ML 1 year later.

Current research indicates that multiple predictors play a role in the development of ML.
These empirically investigated predictors of ML can also be derived from theories on
mathematical modeling that view the cognitive process of solving realistic problems as
consisting of several distinct but interdependent phases (Leiss and Tropper 2014). Depending
on a given task, certain challenges (e.g., reading correctly, extracting the mathematical
information, understanding the context) are essential to solving the problem (Kaiser et al.
2015). Predictors of success in mathematical tasks can be deduced from studying these
challenges.

As problems are mainly given in text form, reading comprehension was found to be crucial
to understanding the problem and its context (Borromeo Ferri 2006). Qualitative studies
showed that many students have difficulties comprehending key words (Phonapichat et al.
2014). A middle to high correlation was reported between mathematical reading comprehen-
sion and modeling competence (Leiss et al. 2010). Lee et al. (2004) showed that the strength of
this relationship is comparable with that of the influence of cognitive skills on solving
mathematical word problems. Reading comprehension for a given problem, additionally,
seems independent of technical reading skills such as reading speed and accuracy (Vilenius-
Tuohimaa et al. 2008).

To correctly solve the mathematics extracted from a problem, basic calculation skills are
needed. Leiss et al. (2010) found a positive correlation between students’ results in a general
mathematics test used as a measure of non-subject-specific mathematics skills and modeling
competence. Counting skills were found to be a valid predictor of later problem-solving skills
(Aunola et al. 2004). Using multiple regression analysis, Andersson (2007) showed that
calculation had an influence on solving word problems that was larger than that of reading
comprehension.
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Mathematical self-concept is also considered crucial for problem-solving achievement
(Pajares and Miller 1994). Additionally, academic self-concept was demonstrated to play a
role in achievement in many school domains (e.g., Marsh et al. 2005). Examining reciprocal
effects of mathematical self-concept and achievement, Marsh et al. (2005) found significant
path coefficients favoring the effect of self-concept on later achievement. This finding seems to
be domain specific (Schöber et al. 2018). Self-efficacy was found to be linked with efficient
problem-solving (Hoffman and Spatariu 2008). Belief in one’s own capability to solve
mathematical problems was also found to be linked with problem-solving performance
(Schommer-Aikins et al. 2005). Also gender differences seem to play a role in this relation-
ship: Studies found that boys, especially when stereotypes were evident, outperformed girls
when they had higher scores on a self-concept measure (Ehrtmann and Wolter 2018; Preckel
et al. 2008).

Besides math-related predictors such as basic calculation skills and mathematical self-
concept, domain-general abilities, that is, cognitive processes, are found to be associated with
ML. Baumert et al. (2007) argued that reasoning skills and mathematical modeling cannot be
investigated independently. There exists research on the relationship of subskills of ML and
cognitive skills such as working memory and fluid intelligence (Lee et al. 2004; Swanson
2011; Swanson et al. 2008) as well as executive functioning and intelligence (Arán Filippetti
and Richaud 2016; Best et al. 2011). Fuchs et al. (2006) conducted path analyses and found
significant path coefficients for language comprehension and nonverbal problem-solving skills
on solving arithmetic word problems. Taken together, prior calculation skills, mathematical
self-concept, reading comprehension, and cognitive skills are theoretically derived as well as
empirically studied predictors of ML.

Socioeconomic status and gender

In studies on ML and academic achievement, among several control variables, two in
particular seem to play a prominent role: socioeconomic status (SES) and gender (e.g.,
Grimm 2008). Children of higher SES tend to receive better grades (Lekholm and
Cliffordson 2008) and perform better on academic achievement measures (Sirin 2005). Kiemer
et al. (2017) found in PISA data that migration status and SES were interconnected because
much of the difference in achievement was due to financial resources when prior achievement
was controlled for. Over the secondary school years, the achievement gap associated with SES
seems to narrow (Caro and Lehmann 2009).

Gender differences have been found in some studies, presumably depending on the
operationalization of outcome variables. For instance, Robinson and Lubienski (2011) found
that teachers rated female students higher on mathematics and reading, while cognitive
assessments suggest males have an advantage in mathematics. We can conclude that it is
important to consider gender and SES when investigating the effects of ML on academic
achievement.

Objectives of the current study

The current state of research lacks empirical evidence for the relationship between ML and
achievement in domains outside mathematical development. However, this is very relevant
because educational standards as well as international studies have focused on promoting ML
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as a means of enabling students to use their mathematical knowledge in their everyday lives
(Hwang and Riccomini 2016; Kaiser et al. 2015; Schukajlow et al. 2015). Moreover, studies so
far have not paid enough attention to the comprehensive influence of ML on academic
achievement in different school domains. Theories on ML indicate that a gain in ML leads
to domain-general problem-solving abilities from which students’ overall academic achieve-
ment could profit in the sense of transfer effects from learning mathematics on other school
domains (Baumert et al. 2012; Chu et al. 2016; Korpipää et al. 2017). Assuming common skill
sets for reasoning, reading comprehension, and problem-solving, transfer effects from ML to
achievement in other school domains are expected.

Several predictors have been empirically documented as having an effect on or being
related to ML (Chu et al. 2016; Kriegbaum et al. 2015; Leiss et al. 2010; Marsh et al. 2005).
Although calculation skills (Andersson 2007; Aunola et al. 2004), mathematical self-concept
(Hoffman and Spatariu 2008; Marsh et al. 2005), reading comprehension (Lee et al. 2004;
Leiss et al. 2010), other prior achievement (Kriegbaum et al. 2015), and reasoning (Fuchs et al.
2006) were separately found to be empirically related to ML, research so far has lacked an
integrative view of these predictors using longitudinal data to account for effects on both ML
and academic achievement in general.

Applying mathematical knowledge in the sense of ML becomes crucial for further math-
ematical development above the primary-school level, particularly throughout secondary
school (United Nations Educational, Scientific and Cultural Organization Institute for
Statistics 2013), yet several studies examining mathematical development have focused on
primary school (e.g., Duncan et al. 2007; Geary 2011; Korpipää et al. 2017). Furthermore,
studies on SES indicate that development in secondary school is a determinant for later
achievement because cumulative advantages (Baumert et al. 2012) and the gap between low
and high SES (Caro and Lehmann 2009) play an important role at this stage. Thus, it becomes
apparent that studies on ML investigating the secondary school years, which constitute an
important phase in ML development, are needed.

Hypotheses and research questions

Our study extends previous research by taking an integrative view of ML that considers
multiple predictors to explore the effects of ML on later academic achievement, using
longitudinal data from a large sample in Grades 5 to 9. Our goal was to investigate how ML
predicts academic achievement (information and communication technology (ICT) literacy,
scientific literacy, reading comprehension, and listening comprehension) in different school
domains throughout secondary school while controlling for prior achievement. We assumed
that ML would still have an effect on later academic achievement in different domains when
prior achievement in the respective domain is controlled for—in the sense of a transfer effect
of ML on achievement in other domains.

We investigated whether existing results regarding predictors of ML can be replicated when
a comprehensive set of predictors is studied simultaneously. On the basis of previous findings,
we assumed that calculation skills, mathematical self-concept, reasoning, and prior achieve-
ment in ML as well as in other domains are linked to later ML. We presumed that these
predictors would show effects on ML throughout secondary school when effects of prior
achievement are controlled for. Therefore, our research questions and hypotheses are as
follows:
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1. How does ML predict academic achievement in different school domains (i.e., ICT
literacy, scientific literacy, reading comprehension, and listening comprehension) through-
out the secondary school years?

Hypothesis 1. ML predicts achievement in different school domains later on even when
prior achievement in the respective domain is controlled for.

2. How do calculation skills, mathematical self-concept, reading comprehension, and rea-
soning affect ML when studied comprehensively?

Hypothesis 2. Calculation skills, mathematical self-concept, reading comprehension, and
reasoning predict ML later on when the respective other predictors are controlled for.

As minor questions, we investigated whether hypotheses 1 and 2 are still valid when potential
effects of the control variables SES and gender are taken into account.

In sum, it is notable that recent research focused mainly on either preschool and the early
school years or high school and college. We examined the postulated relationships from
Grades 5 to 9, hence across secondary school.

Method

Sample

We examined our research questions using data from theNational Educational Panel Study (NEPS),
a longitudinal study conducted in Germany designed for research on educational trajectories
(Blossfeld et al. 2011). We used data provided as scientific-use files for registered users of NEPS,
which began investigating fifth-grade students in 2010, at two measurement points (Grades 5 or 6,
and 9). NEPS provided separate files for competencemeasures, cohort information, and both student
and parent questionnaires, which were prepared for scientific use following professional guidelines
and by publishing reports about validity, scaling, and reliability. The original panel cohort consisted
of 6112 students, of whom 5778 participated in the first wave in Grade 5. Four years later, 5452
students from the original sample were targeted, of whom 4001 participated in Grade 9 (cf., Zinn
et al. 2018). The sample is suited for answering our research questions because this cohort follows
students through the course of secondary school (Fabian et al. 2019).

Analyses for testing the postulated hypotheses were conducted with domain-specific
competence data (ML, reading, and reasoning) and questionnaire information (math grade,
mathematical self-concept, and gender) in Grade 5, domain-specific competence data in Grade
6 (ICT literacy, scientific literacy, and listening comprehension), and the corresponding
domain-specific competence data in Grade 9. Information about SES was obtained from
parent questionnaires.

The final sample consisted of 4001 students (N= 1963 female (49.4%),missing values in gender:
N= 26). Students in Germany in most federal states follow one of three school tracks (Hauptschule,
Realschule, or Gymnasium, typically considered general, intermediate, and advanced secondary
school, respectively) after the end of Grade 4. In our sample, 51.9% (N= 1701) were allocated to
Gymnasium, 30.0% (N= 917) to Realschule, and 7.6% (N= 249) toHauptschule, thus being fairly
representative regarding German school tracks. Relying on the German federal school system,
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students attending some schools were not yet divided into school tracks (N= 238), and for some
students, the declared school track was unclear (N= 722) or missing (N= 174). Regarding SES,
13.8% (N= 418) of students were categorized as having low, 62.9% (N= 1771) intermediate, and
23.3% (N= 668) high SES (missing: N= 1144).

Measures

ML

Amathematical competence assessment was administered consisting of 24 items in Grade 5 and 34
items in Grade 9. The theoretical framework for the mathematics test construction was based on the
PISA as well as national educational standards and was designed to measure ML on the basis of
mathematical problems from students’ life contexts (Neumann et al. 2013). Students were asked to
solve mathematical problems and answer mostly multiple-choice questions. As in the PISA, items
could be assigned to one of four content areas: quantity, change and relationship, shape and space,
and data and chance. Six different cognitive components were distributed over these items with
modeling as one of these six components. A sample item titled “The Fence” goes as follows: “Mr.
Brown owns a rectangular piece of land that he wants to fence. After calculating, he buys 40 meters
of fence. The piece of land has a width of 8 meters. How long is the piece of land?” This item
involving modeling belongs to the content area space and shape (Schnittjer and Duchhardt 2015).

Weighted maximum likelihood estimates (WLEs), which are estimates of a student’s most
likely competence (Pohl and Carstensen 2013), were computed to indicate domain-specific
competence. Scaling relies on item response theory (IRT; Pohl and Carstensen 2012). For the
following analyses, WLEs of ML were used from Grades 5 to 9, for which sufficient
reliabilities (.78 and .81, respectively) have been reported (Duchhardt and Gerdes 2012; Van
den Ham et al. 2018). WLEs, theoretically, are standardized scores with M = 0.00 and SD =
1.00, but the values can differ from zero or one, respectively, due to sample selection
procedures. Analyses on panel attrition in the NEPS showed that students in this sample with
good or medium ML have a stronger tendency to drop out (Zinn et al. 2018). This could mean
that students with lower ML are overrepresented in our sample.

Math grade

Students reported their final math grade from the previous year, which, therefore, referred to
Grade 4. Students in Grade 4 were not yet divided into school tracks, which enhances the
comparability and validity of our measure. Germany uses a grading system of 1 to 6, with 1
indicating the best grade possible. In German-speaking countries, basic calculation skills, for
instance, unit operations, are learned in primary school during Grades 1 to 4. For this reason,
we argue that math grade at this age represents students’ ability in the basic calculation skills
needed to solve ML problems, which is why we used it as a measure of mathematical
performance in terms of students’ calculation skills.

Mathematical self-concept

Mathematical self-concept was conceptualized as domain specific and was geared to the PISA
(Wohlkinger et al. 2011). Domain-specific self-concept is widely seen as a subdimension of
students’ overall academic self-concept and can be investigated in a subject-specific way
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(Wohlkinger et al. 2016). It was measured using three items (i.e., “I get good grades in
mathematics,” “Mathematics is one of my best subjects,” and “I have always been good at
mathematics”) with answers ranging from 1 (does not apply at all) to 4 (applies completely) on
a 4-point Likert scale. A mean score was calculated from these items. Mathematical self-
concept was assessed in Grade 5; Cronbach’s alpha for this scale was .87.

ICT literacy

ICT literacy was conceptualized as computer literacy from a functional perspective and relies on
everyday problems in modern-day societies (Weinert et al. 2011). Students were presented corre-
sponding problems and asked to accomplish computer-based tasks mostly with screenshots of
applications.Moreover, students were asked to answer 30 (Grade 6) or 36 (Grade 9)multiple-choice
items. The test was designed to measure students’ ability to access, create, manage, and evaluate
software applications. ICT literacywas used fromGrades 6 to 9, for which sufficient reliabilities (.69
and .81, respectively) were reported (Senkbeil and Ihme 2017; Senkbeil et al. 2014).

Scientific literacy

Scientific literacy was conceptualized as the ability to apply scientific knowledge of personal,
social, and global importance in the contexts of environment, technology, and health (Hahn
et al. 2013). The test was designed to measure knowledge about matter, systems, development,
and interactions in scientific inquiry and reasoning. WLEs were calculated and used from 27
(Grade 6) to 28 (Grade 9) items. Good reliabilities of .77 (Grade 6) and .83 (Grade 9) were
reported (Funke et al. 2016; Hahn et al. 2013).

Reading comprehension

Reading comprehension was conceptualized as functional understanding of texts (Gehrer et al.
2013). Students were asked to answer multiple-choice questions about texts meant to represent
everyday reading such as information, commentaries, argumentations, instructions, or advertise-
ments. Requirements were categorized into finding information, drawing conclusions, and reflecting
texts. Reading comprehension (WLEs)was used fromGrades 5 to 9, forwhich sufficient reliabilities
(.77 and .79, respectively) were reported (Pohl et al. 2012; Scharl et al. 2017).

Listening comprehension

Listening comprehension in the NEPS was assessed differently over time. In Grade 6,
receptive vocabulary was assessed using an adapted version of the Peabody Picture Vocabu-
lary Test (PPVT; Roßbach et al. 2005). In the PPVT with 77 items in total, students choose one
of four pictures based on a given word. Sum scores were calculated for listening comprehen-
sion in Grade 6. Cronbach’s alpha for this scale was .88.

In Grade 9, listening comprehension was conceptualized as the ability to extract informa-
tion from spoken texts and to draw conclusions that are implied in these texts (Hecker et al.
2015). In line with the literacy perspective, texts were based on realistic contexts. Students
heard two texts (a conversation and a narration) and were asked to answer two sets of eight
complex multiple-choice items. Listening comprehension (WLE) was used from Grade 9, for
which sufficient reliability (.76) was reported (Rohm et al. 2017).
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Reasoning

To measure basic cognitive skills, two tests were constructed for the NEPS: a picture symbol
test assessing perceptual speed, and a matrices test assessing reasoning (Haberkorn and Pohl
2013). It has been argued that these two indicators are suitable for assessing fluid intelligence
because they are theoretically central and have been empirically found to be crucial for
successful development (Brunner et al. 2014). For our study, students’ results from the
matrices test in Grades 5 and 9 were used to investigate reasoning. Reasoning was assessed
using three sets of four items, with Cronbach’s alpha = .66 in both grades. Sum scores were
calculated, which resulted in a maximum of 12.

SES

In the parent questionnaire at Grade 5, a parent reported his or her highest educational
attainment. Responses were rated based on the Comparative Analysis of Social Mobility in
Industrial Nations Scale (Brauns et al. 2003). The scale was recoded into three categories: low
(no degree or degree with basic work-related training), intermediate (advanced work-related
training or postsecondary school), and high (university level or higher), as has been suggested
for studies using NEPS data (cf., Zinn et al. 2018).

Modeling issues and missing data

We estimated a structural equation model with regression analyses for assumed paths using the
lavaan package in R (R Development Core Team 2008). Fit indices (root mean square error of
approximation (RMSEA), confirmatory fit index (CFI), Tucker–Lewis index (TLI)) were used
to examine model fit. We applied cutoff values of .06 for RMSEA and .95 for CFI and TLI,
which according to Hu and Bentler (1999) indicate a good fit between a hypothesized model
and the observed data.

Measurement invariance for ML, ICT literacy, scientific literacy, reading comprehension,
and listening comprehension (all by means of WLE) was ensured with an elaborated concep-
tualization in the NEPS based on models of IRT as well as an anchor-item design (cf., Pohl
et al. 2015). It was strengthened by testing for unidimensionality and demonstrating the
absence of differential item functioning (e.g., Fischer et al. 2016). Reasoning was measured
using the same items on both occasions.

Missing data in single competence tests were already treated when calculating WLEs (cf.,
Pohl and Carstensen 2013). For missing data in one of the other instruments as well as for
participants missing whole competence test assessments, we used a full information maximum
likelihood (FIML) approach because statistical power is maintained and FIML typically
produces less biased results than listwise deletion (Enders 2010).

Results

Descriptive statistics

Table 1 shows manifest correlations, minima, maxima, means, and standard deviations for all
variables. Bivariate correlations were found between variables of interest, of which most
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appeared to be highly significant. All predictor and outcome variables correlated positively
with each other, showing that ML was associated with academic achievement in different
school domains 4 years later. Moreover, the correlations among predictors support our
assumption that calculation skills, mathematical self-concept, reading comprehension, and
reasoning need to be studied together. With respect to control variables, gender differences
were found for all variables except SES, ICT literacy, and reasoning in Grade 9. Male students
scored higher on all variables except listening comprehension in Grade 9 and reading
comprehension in Grades 5 and 9, on which female students scored higher. This finding
indicates that gender is an important control variable for our analyses. For all variables of
interest apart from mathematical self-concept, significant correlations with SES were found,
with higher SES students scoring higher on all measures.

Structural equation model

As our descriptive statistics indicate, ML was associated with later academic achieve-
ment in different school domains (research question 1). Furthermore, predictors of ML
were correlated with each other, implying that they should be studied together
(research question 2). To explore our hypotheses about controlling for prior achieve-
ment in the respective domain when looking for predictive effects of ML on achieve-
ment in different domains (hypothesis 1) and studying predictors comprehensively
(hypothesis 2), we calculated a structural equation model. The estimated model is
presented in Fig. 1. Since, as expected, we did not find math grade and mathematical
self-concept to significantly add to later achievement in school domains other than

Fig. 1 Estimated model without coefficients. Root mean square error of approximation = .035, comparative fit
index = .998, Tucker–Lewis index = .982. ICT = information and communication technology; SES = socioeco-
nomic status. On the left, ICT literacy, scientific literacy, and listening comprehension from Grade 6 (indented),
math grade from Grade 4, others from Grade 5. Paths for the effect of math grade and mathematical self-concept
on later achievement in school domains other than mathematical literacy were not included because no significant
effects were found
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ML when controlling for prior achievement, we did not include corresponding paths
in the model. We found significant covariances for all exogenous variables (values are
not depicted in Fig. 1 for better readability). For better readability of the figure, the
corresponding path coefficients for our regression analyses are presented in Table 2.
Given skewness ranging from − 1.12 (reasoning) to 0.63 (math grade) and kurtosis
ranging from − 0.69 (mathematical self-concept) to 1.21 (reasoning), normal distribu-
tion of the data was assumed (cf., Kaplan 2009). The model produced a good fit of
the data (cf., Hu and Bentler 1999), with RMSEA = .035, CFI = .998, and TLI = .982.

As we wanted to investigate only the effects of ML on later academic achievement
while controlling for prior achievement in the respective domain (research question 1),
we did not need to predict mathematical self-concept in Grade 9. While math grade
was used as a predictor in terms of students’ basic calculation skills in Grade 5, we
did not include students’ math grade as an outcome variable in Grade 9. Moreover,
SES was assessed in Grade 5 and was used as a control variable, which is why we
did not include SES in Grade 9 in the model. To account for the nested structure of
the data, we tested for models with values centered around schoolhouse as well as
classroom means but found no changes in the significances of path coefficients.

As we found bivariate correlations with gender for several variables, we estimated
a multigroup model to test for gender differences. No significant gender differences
were found for loadings or path coefficients when testing for differences in model fit
indices among different models. Regarding our minor hypothesis on gender effects,
we conclude that analyses with respect to our other hypotheses are valid since we did
not find any gender differences. We also tested for different models with paths
regarding influences of SES on later reasoning but did not find a significant effect.

Research question 1: impact of ML on academic achievement

Our model revealed significant path coefficients fromML in Grade 5 to achievement in four
school domains and reasoning in Grade 9 while considering prior achievement in the
respective domain. First, on ICT literacy in Grade 9 (R2 = .54 for all predictors), a significant
effect (β = .19) of ML was found. Second, a significant path coefficient (β = .17) was found
from ML in Grade 5 to scientific literacy in Grade 9 (R2 = .57). Third, for reading compre-
hension in Grade 9 (R2 = .49), a significant path coefficient (β = .06) was found from ML in
Grade 5. Fourth, a significant path coefficient of β = .09 was found from ML in Grade 5 to
listening comprehension in Grade 9 (R2 = .42). Fifth, regarding reasoning in Grade 9
(R2 = .33), a significant path coefficient (β = .23) was found from ML in Grade 5. Prior
achievement in other domains showed no significant effects on reasoning in Grade 9, apart
from scientific literacy, for which there was also a significant path coefficient (β = .10).
Though we did not make assumptions on the effects of ML on reasoning, ML was found to
impact reasoning 4 years later, while prior achievements in other domains except scientific
literacy did not have a significant effect on later reasoning. Moreover, significant paths were
found for SES to later academic achievement in different school domains except for ICT
literacy, confirming the importance of SES as a control variable. Our results confirm
hypothesis 1, showing that ML predicted achievement in different school domains 4 years
later when prior achievement in the respective domain was taken into account. This provides
evidence for the presumed transfer effect of ML on achievement in other school domains
over time.
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Research question 2: predictors of ML

Significant paths were found for all assumed predictors on ML in Grade 9, namely math grade,
mathematical self-concept, prior achievement in different domains (i.e., ICT literacy, scientific
literacy, reading, and listening comprehension), reasoning, and SES with the autoregressive
path showing the highest effect (β = .35). The regression analysis explained 60% of the
variance in ML in Grade 9. This finding confirms hypothesis 2, supporting the assumption
that predictors found in previous studies still have an effect on ML throughout the secondary
school years even if predictive effects among them and prior achievement in ML and other
domains are accounted for. This supports taking an integrative view of predictor variables
when investigating ML.

Discussion

The main goal of this study was to examine transfer effects of ML on later academic
achievement in different school domains (i.e., ICT literacy, scientific literacy, reading com-
prehension, and listening comprehension) while taking known predictors into account and
considering prior achievement in the respective domain, SES, and gender. In an extension to
previous research, we focused on ML across the secondary school years using representative
longitudinal data from the NEPS (Blossfeld et al. 2011).

Consistent with our hypotheses, we found effects of ML on later academic achievement in
different domains. These results confirm our hypotheses regarding the influence of ML on
achievement in different school domains in terms of a transfer effect. In line with previous
findings from Baumert et al. (2012), Chu et al. (2016), and Korpipää et al. (2017), we suggest
that the transfer effect of ML is due to the promotion of domain-general abilities such as
problem-solving and a deeper understanding of texts, realistic contexts, and students’ everyday
life through competence development linked with students’ ML. We even found a significant
effect of ML in Grade 5 on reasoning in Grade 9—while controlling for prior reasoning—
which strengthens this explanation.

In line with current research on predictors of ML, our study confirmed the role of
calculation skills, mathematical self-concept, reading comprehension, and reasoning as
predictive factors of ML (Andersson 2007; Baumert et al. 2007; Borromeo Ferri 2006;
Chu et al. 2016; Kriegbaum et al. 2015; Pajares and Miller 1994). We assumed these
predictors, found in separate studies to have an effect on ML, to predict later ML when
examined at the same time and while controlling for prior achievement. Our results
support an integrative view of different phases of the process of solving mathematical
problems, as has been suggested in various theoretical articles and qualitative studies
(e.g., Kaiser et al. 2015; Leiss and Tropper 2014). Concerning cognitive models of ML,
which typically view the process of solving mathematical problems as consisting of
different phases, our results reveal that mathematical self-concept still has an effect on
ML when prior achievement is controlled for. This is in line with findings from Marsh
et al. (2005) and self-enhancement models of self-concept (Bandura 1997), which
suggest there is an underlying motivational basis to the effects of mathematical self-
concept on ML. Students profit from high self-concept because it enhances their moti-
vation, which is especially useful when attempting the complex tasks involved in ML.
We found that reasoning also showed an effect on later ML, which is in accordance with
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previous arguments on the role of cognitive skills in ML (Baumert et al. 2007) and
underlines the role of general cognitive abilities, in the sense of shared skill sets of ML
and achievement in other domains.

In contrast to what previous research showed (e.g., Robinson and Lubienski 2011), we
found no gender differences in paths from comprehensive predictors to ML or from ML,
prior achievement, and reasoning to achievement in different school domains. We
presume that this may be due to our operationalization of outcome variables as compe-
tence measures (in contrast to GPA) and the fact that taking other explanatory variables
such as math grade or self-concept into account may diminish gender effects.

Regarding SES, we found significant paths to ML and achievement in different school
domains 4 years later, which is in line with previous research on achievement measures (Sirin
2005). Though an SES-related achievement gap appears to narrow through the course of
secondary school (Caro and Lehmann 2009), students with higher SES still score higher on
different achievement measures in Grade 9.

Limitations and directions for future research

We examined the influence of ML on later academic achievement longitudinally throughout
secondary school with a national representative sample. While this is an important time span
previously neglected in studies on ML, a longer time span reaching into students’ vocational
years would shed light on further academic as well as nonacademic outcomes.

Because we used data from the large-scale NEPS assessments, limitations lie in the
restriction to scales used in the study. Mathematical self-concept, for instance, while having
the strength of being domain specific (Schöber et al. 2018), consisted of only three items.
Broader and more differentiating concepts such as self-efficacy, attitudes, or motivational
variables would be interesting to take into account to cover self-concept. Especially the role of
self-efficacy in ML would appear to warrant further attention (Krawitz and Schukajlow 2017;
Schukajlow et al. 2012). With respect to cognitive skills, which have been argued and
empirically found to play an important role in mathematical problem-solving, the domain of
verbal intelligence should be examined as well, because reading and listening comprehension
were found to influence ML.

Disregarded by our research approach were other phases in the cognitive process ofML, such
as metacognitive skills (Maass 2006), working memory (Swanson 2011), and personality
(Phonapichat et al. 2014), all argued to have an influence on solving mathematical problems.
Concerning individual differences in competence development, differences regarding migration
background are a broadly discussed topic in the current literature. With controlling for SES, we
have partly addressed this issue because SES is considered to be linked to migration background
(e.g., Lenkeit et al. 2015). Future studies should address the influence of migration background
directly to broaden the integrative view of predictive factors of ML, as differences in mathemat-
ical development were found to be entangled with reading competence (e.g., Lehner et al. 2017).

From a methodological perspective, though our results are longitudinal, they are restricted
in that they are not interventional. Besides this, the possibility of there being other paths that
were not analyzed restricts the validity of causal effects. The argument for causal transfer
effects of ML on achievement in different school domains relies on theoretical assumptions
(i.e., shared skill sets being fostered by gains in ML) and is methodologically strengthened by
controlling for prior achievement in the respective domains as well as taking ML 4 years
previous into account. Nevertheless, we only tested for predictive patterns, resulting in the
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need for experimental manipulations (e.g., instructional approaches to teaching ML) to get
more evidence of causal transfer effects. Moreover, with respect to other scholars, Leiss et al.
(2010) argued that addressing how teachers themselves are taught to foster their students’ ML
is essential. Lehner et al. (2017) postulated encouraging, motivating lessons, classroom
management, and schooling structure to be central for mathematical competence development.
Applying a solution plan when solving mathematical problems could foster ML as well as
mathematical self-efficacy (Schukajlow et al. 2015). Also, class sizes seem to play a role,
though findings are still inconclusive (Ehrenberg et al. 2001; Hattie 2009; Schukajlow and
Blum 2011). To enlarge the integrative view, interventional studies are needed to further
investigate ML and its role in achievement and life success.

Conclusion and practical implications

We found consistent support for the importance of ML for general academic achievement. ML
was found to be linked with achievement in math-related domains (ICT literacy, scientific
literacy) as well as domains not directly related to mathematics (listening and reading
comprehension). We argue that this not only underlines the effect of ML on understanding
mathematics in today’s life contexts (Baumert et al. 2007) but also indicates the existence of a
transfer effect of applying this understanding for better life competence in domains other than
mathematics. In our view, this means that students profit—in terms of their future academic
achievement—when educators and policy makers invest in students’ ML. Our results suggest
that the success of such investment is comparable with that obtained by the investment in
fostering other competences such as reading comprehension. The universality of our model
regarding gender differences reinforces the idea of not differentiating between boys and girls
concerning the support they get in learning mathematics and reading.

The consistent support we found in line with previous studies regarding the influence of
predictive factors on ML could encourage teachers and parents to foster students’ mathemat-
ical self-concept as well as their ML from early on. This also supports the current directions in
international educational standards to implement the literacy perspective in the domain of
mathematics in the conceptualizations of school curricula (National Council of Teachers of
Mathematics 2003; Standing Conference of the Ministers of Education and Cultural Affairs of
the Federal Republic of Germany 2004). Given our findings and following the ML concept of
PISA 2021 (OECD 2019), teachers should, when designing their mathematics lessons and
motivating their students, keep in mind the applicability for current and post-school partici-
pation in a culture. The theoretical insights and evidence of our study indicate that making ML
part of a daily routine elicits mathematical development and trains skills that advance students
in other school domains. We assume that this different perspective on ML leads to a deeper,
broadened understanding of the significance of mathematics in students’ everyday lives.
Keeping in mind the relationships of reasoning and self-concept as well as the links between
SES and ML, we strongly suggest integrating encouraging, vivid, and resource-based teaching
methods that foster students’ mathematical self-concept when guiding students to tackle the
challenging elements of ML problems. Applying a solution plan (Schukajlow et al. 2015)
might prove to be useful in this regard. Following these recommendations, we are convinced
that ML is key to motivating a diverse range of students. Finally, the impact we found of SES
on later achievement in different school domains when controlling for prior achievement
highlights the need for educational equity.
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