Pascal, Joris

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Pascal
Vorname
Joris
Name
Pascal, Joris

Suchergebnisse

Gerade angezeigt 1 - 7 von 7
  • Publikation
    Low-coercivity perpendicular spin transfer torque magnetic tunnel junctions as nanoscale magnetic sensors
    (IEEE, 09/2023) Nicolas, Hugo; Sousa, Ricardo C.; Mora-Hernández, Ariam; Prejbeanu, Ioan-Lucian; Hebrard, Luc; Kammerer, Jean-Baptiste; Pascal, Joris [in: 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers)]
    This paper presents the use of the spin transfer torque effect in perpendicular magnetic tunnel junctions to operate the devices as magnetic sensors. The junctions, specifically designed for sensing applications exhibit close to low-coercivity, allowing the sensitivity to be as high as 25 mV/mT for a large dynamic range of 20 mT. In addition, the junctions have diameters ranging from 20 to 100 nanometers, making them among the smallest magnetic sensing elements ever reported to our knowledge. A single operational amplifier operates the junction and outputs a voltage proportional to the external magnetic field. This paper opens the way to a monolithic integration of both the conditioning electronics and the perpendicular magnetic tunnel junction.
    04B - Beitrag Konferenzschrift
  • Publikation
    Monitoring the exposure to magnetic fields of MRI workers using goggles integrating magnetometers
    (2023) Jeker, Dominic; Quirin, Thomas; Pascal, Joris [in: 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA)]
    04B - Beitrag Konferenzschrift
  • Publikation
    Experimental assessment of the performances of an anisotropic magnetoresistive sensor after exposure to strong magnetic fields
    (IEEE, 2023) Vergne, Céline; Nicolas, Hugo; Madec, Morgan; Hemm-Ode, Simone; Guzman, Raphael; Pascal, Joris [in: 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers)]
    On-chip magnetometers are already integrated within long-term implants such as cardiac implantable electronic devices. They are also good candidates to be integrated within the next generations of brain stimulation electrodes to provide their position and orientation. In all cases, long-term implants are expected to be at least certified as MRI conditional. We investigated the resilience to the exposure to 3 T and 7 T of an anisotropic magnetoresistive sensor integrating a set/reset function. The sensitivity, non-linearity, and offset of a batch of 63 identical sensors were not affected by the exposure. These preliminary results provide new insights on the usability of magnetoresistive sensors for biomedical applications requiring MRI conditionality.
    04B - Beitrag Konferenzschrift
  • Publikation
    A magnetic camera to assess the risk of magnetic interaction between portable electronics and cardiac implantable electronic devices
    (IEEE, 06/2022) Quirin, Thomas; Vergne, Céline; Féry, Corentin; Badertscher, Patrick; Nicolas, Hugo; Mannhart, Diego; Osswald, Stefan; Kuhne, Michael; Sticherling, Christian; Madec, Morgan; Hébrard, Luc; Knecht, Sven; Pascal, Joris [in: IEEE International Symposium on Medical Measurements and Applications (MeMeA)]
    04B - Beitrag Konferenzschrift
  • Publikation
    A magnetic sensor based on a nanometric spin transfer torque magnetic tunnel junction suitable for monolithic integration
    (IEEE, 2022) Nicolas, Hugo; Pascal, Joris; Hebrard, Luc; Kammerer, Jean-Baptiste; Sousa, Ricardo C.; Mora-Hernandez, Ariam; Prejbeanu, Ioan-Lucian [in: 2022 IEEE Sensors]
    04B - Beitrag Konferenzschrift
  • Publikation
    Millirobot magnetic manipulation for ocular drug delivery with sub millimeter precision
    (IEEE, 2022) Vergne, Céline; Ignacio, Jose; Quirin, Thomas; Sargent, David; Pascal, Joris [in: 2022 IEEE Sensors]
    Significant progress has been made in the development of magnetic micromanipulation for minimally invasive surgery. The development of systems to localize millimetric size robots during magnetic navigation and without line of sight remains however a challenging task. In this study, we focused on the development of a tracking system aiming to fill this gap. A robot which consists of a cylindrical magnet of 1 mm diameter is localized using a 2D array of 3D magneto resistive sensors. The system provides a tracking of the robot with a refreshing rate of 2 Hz. The developed tracking algorithm reaches a mean absolute error for the position and the orientation of, respectively 0.56 mm and 5.13° in 2D. This system can be added to existing magnetic navigation systems allowing closed loop control of the navigation. The presented tracking system makes it possible to target applications such as minimally invasive ocular drug delivery.
    04B - Beitrag Konferenzschrift
  • Publikation
    Electro-thermal modeling of a Rogowski coil sensor system
    (2015) Pascal, Joris; Vachoux, Alain; Rodriguez Estupiñan, Juan Sebastian [in: International Symposium on VLSI Design, Automation and Test (VLSI-DAT) 2015]
    04B - Beitrag Konferenzschrift