Hemm-Ode, Simone

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Hemm-Ode
Vorname
Simone
Name
Hemm-Ode, Simone

Suchergebnisse

Gerade angezeigt 1 - 10 von 10
  • Publikation
    Low-field electromagnetic tracking using 3-D magnetometer for assisted surgery
    (IEEE, 02/2023) Vergne, Céline; Féry, Corentin; Quirin, Thomas; Nicolas, Hugo; Madec, Morgan; Hemm-Ode, Simone; Pascal, Joris [in: IEEE Transactions on Magnetics]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Erratum to “Lamb waves and adaptive beamforming for aberration correction in medical ultrasound imaging”
    (IEEE, 02/2021) Mozaffarzadeh, Moein; Minonzio, Claudio; De jong, Nico; Verweij, Martin; Hemm-Ode, Simone; Renaud, Guillaume; Daeichin, Verya [in: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control]
    In the above article [1] , we mentioned that the superposition of the different symmetric (S) modes in the frequency wavenumber (f-k) domain results in a high-intensity region where its slope corresponds to the longitudinal wave speed in the slab. However, we have recently understood that this high intensity region belongs to the propagation of a wave called lateral wave or head wave [2] – [5] . It is generated if the longitudinal sound speed of the aberrator (i.e., the PVC slab) is larger than that of water and if the incident wavefront is curved. When the incidence angle at the interface between water and PVC is near the critical angle, the refracted wave in PVC reradiates a small part of its energy into the fluid (i.e., the head wave). As discussed in [4] , if the thickness of the waveguide is larger than the wavelength, the first arriving signal is the head wave. This is also the case in our study [1] where the ultrasound wavelength of a compressional wave in PVC was close to 1 mm, and a PVC slab with a thickness of 8 mm was used.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Lamb waves and adaptive beamforming for aberration correction in medical ultrasound imaging
    (IEEE, 06.07.2020) Mozaffarzadeh, Moein; Minonzio, Claudio; de Jong, Nico; Verweij, Martin; Hemm-Ode, Simone; Daeichin, Verya [in: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control]
    Phase aberration in transcranial ultrasound imaging (TUI) caused by the human skull leads to an inaccurate image reconstruction. In this article, we present a novel method for estimating the speed of sound and an adaptive beamforming technique for phase aberration correction in a flat polyvinylchloride (PVC) slab as a model for the human skull. First, the speed of sound of the PVC slab is found by extracting the overlapping quasi-longitudinal wave velocities of symmetrical Lamb waves in the frequency-wavenumber domain. Then, the thickness of the plate is determined by the echoes from its front and back side. Next, an adaptive beamforming method is developed, utilizing the measured sound speed map of the imaging medium. Finally, to minimize reverberation artifacts caused by strong scatterers (i.e., needles), a dual probe setup is proposed. In this setup, we image the medium from two opposite directions, and the final image can be the minimum intensity projection of the inherently co-registered images of the opposed probes. Our results confirm that the Lamb wave method estimates the longitudinal speed of the slab with an error of 3.5% and is independent of its shear wave speed. Benefiting from the acquired sound speed map, our adaptive beamformer reduces (in real time) a mislocation error of 3.1, caused by an 8 mm slab, to 0.1 mm. Finally, the dual probe configuration shows 7 dB improvement in removing reverberation artifacts of the needle, at the cost of only 2.4-dB contrast loss. The proposed image formation method can be used, e.g., to monitor deep brain stimulation procedures and localization of the electrode(s) deep inside the brain from two temporal bones on the sides of the human skull.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Anatomical brain structures normalization for deep brain stimulation in movement disorders
    (Elsevier, 25.04.2020) Vogel, Dorian; Shah, Ashesh; Hemm-Ode, Simone [in: NeuroImage: Clinical]
    Deep brain stimulation (DBS) therapy requires extensive patient-specific planning prior to implantation to achieve optimal clinical outcomes. Collective analysis of patient’s brain images is promising in order to provide more systematic planning assistance. In this paper the design of a normalization pipeline using a group specific multi-modality iterative template creation process is presented. The focus was to compare the performance of a selection of freely available registration tools and select the best combination. The workflow was applied on 19 DBS patients with T1 and WAIR modality images available. Non-linear registrations were computed with ANTS, FNIRT and DRAMMS, using several settings from the literature. Registration accuracy was measured using single-expert labels of thalamic and subthalamic structures and their agreement across the group. The best performance was provided by ANTS using the High Variance settings published elsewhere. Neither FNIRT nor DRAMMS reached the level of performance of ANTS. The resulting normalized definition of anatomical structures were used to propose an atlas of the diencephalon region defining 58 structures using data from 19 patients.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Stimulation maps: visualization of results of quantitative intraoperative testing for deep brain stimulation surgery
    (Springer, 30.01.2020) Shah, Ashesh; Vogel, Dorian; Pison, Daniela; Schkommodau, Erik; Hemm-Ode, Simone [in: Medical & Biological Engineering & Computing]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    A novel assistive method for rigidity evaluation during deep brain stimulation surgery using acceleration sensors
    (American Association of Neurological Surgeons, 09/2017) Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jaques; Schkommodau, Erik; Taub, Ethan; Guzman, Raphael; Hemm-Ode, Simone [in: Journal of Neurosurgery]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Optical Measurements during Deep Brain Stimulation Lead Implantation: Safety Aspects
    (Karger, 01/2017) Zsigmond, Peter; Hemm-Ode, Simone [in: Stereotactic and Functional Neurosurgery]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Patient-specific electric field simulations and acceleration measurements for objective analysis of intraoperative stimulation tests in the thalamus
    (Frontiers, 25.11.2016) Hemm-Ode, Simone; Pison, Daniela; Alonso, Fabiola; Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jaques; Wårdell, Karin [in: Frontiers in Human Neuroscience]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Intraoperative acceleration measurements to quantify tremor during deep brain stimulation surgery
    (Springer, 2016) Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jaques; Taub, Ethan; Schüpbach, W.M. Michael; Pollo, Claudio; Schkommodau, Erik; Guzman, Raphael; Hemm-Ode, Simone [in: Medical & Biological Engineering & Computing]
    Deep brain stimulation (DBS) surgery is extensively used in the treatment of movement disorders. Nevertheless, methods to evaluate the clinical response during intraoperative stimulation tests to identify the optimal position for the implantation of the chronic DBS lead remain subjective. In this paper, we describe a new, versatile method for quantitative intraoperative evaluation of improvement in tremor with an acceleration sensor that is mounted on the patient’s wrist during surgery. At each anatomical test position, the improvement in tremor compared to the initial tremor is estimated on the basis of extracted outcome measures. This method was tested on 15 tremor patients undergoing DBS surgery in two centers. Data from 359 stimulation tests were acquired. Our results suggest that accelerometric evaluation detects tremor changes more sensitively than subjective visual ratings. The effective stimulation current amplitudes identified from the quantitative data (1.1 ± 0.8 mA) are lower than those identified by visual evaluation (1.7 ± 0.8 mA) for similar improvement in tremor. Additionally, if these data had been used to choose the chronic implant position of the DBS lead, 15 of the 26 choices would have been different. These results show that our method of accelerometric evaluation can potentially improve DBS targeting.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Optical measurements during DBS lead implantation - safety aspects
    (Karger, 2016) Zsigmond, Peter; Hemm-Ode, Simone; Wardell, Karin [in: Stereotactic and Functional Neurosurgery]
    01A - Beitrag in wissenschaftlicher Zeitschrift