Wache, Holger

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Wache
Vorname
Holger
Name
Wache, Holger

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Publikation
    Technical Validation of the RLS Smart Grid Approach to increase Power Grid Capacity without Physical Grid Expansion
    (SciTePress, 05/2019) Christen, Ramón; Layec, Vincent; Wilke, Gwendolin; Wache, Holger; Donnellan, Brian; Klein, Cornel; Helfert, Markus [in: Smartgreens 2019. 8th International Conference on Smart Cities and Green ICT Systems, Heraklion, Crete, Greece, May 3-5, 2019. ProceedingsHeraklion, Crete, Greece,]
    The electrification of the global energy system and the shift towards distributed power production from sus- tainable sources triggers an increased network capacity demand at times of high production or consumption. Existing energy management solutions can help mitigate resulting high costs of large-scale physical grid rein- forcement, but often interfere in customer processes or restrict free access to the energy market. In a preceding paper, we proposed the RLS regional load shaping approach as a novel business model and load management solution in middle voltage grid to resolve this dilemma: market-based incentives for all stakeholders are pro- vided to allow for flexible loads that are non-critical in customer processes to be allocated to the unused grid capacity traditionally reserved for N-1 security of supply. We provide a validation of the technical aspects of the approach, with an evaluation of the day-ahead load forecasting method for industry customers and a load optimization heuristics. The latter is tested by a simulation run on a scenario of network branch with provoked capacity bottlenecks. The method handles all provoked critical network capacity situations as expected.
    04B - Beitrag Konferenzschrift
  • Publikation
    Technical validation of the RLS smart grid approach to increase power grid capacity without physical grid expansion
    (SciTePress, 2019) Christen, Ramón; Layec, Vincent; Wilke, Gwendolin; Wache, Holger; Donnellan, Brian; Klein, Cornel; Helfert, Markus [in: Proceedings of the 8th International Conference on Smart Cities and Green ICT Systems]
    The electrification of the global energy system and the shift towards distributed power production from sus- tainable sources triggers an increased network capacity demand at times of high production or consumption. Existing energy management solutions can help mitigate resulting high costs of large-scale physical grid rein- forcement, but often interfere in customer processes or restrict free access to the energy market. In a preceding paper, we proposed the RLS regional load shaping approach as a novel business model and load management solution in middle voltage grid to resolve this dilemma: market-based incentives for all stakeholders are pro- vided to allow for flexible loads that are non-critical in customer processes to be allocated to the unused grid capacity traditionally reserved for N-1 security of supply. We provide a validation of the technical aspects of the approach, with an evaluation of the day-ahead load forecasting method for industry customers and a load optimization heuristics. The latter
    04B - Beitrag Konferenzschrift
  • Publikation
    Flexible capacity addition case study at reduced grid tariff without security of supply
    (2019) Layec, Vincent; Wache, Holger [in: 2019 16th International Conference on the European Energy Market (EEM)]
    Energy intensive industries are sensitive both to the reliability and to the costs of their energy supply system. With renewable energy becoming more affordable, their weather dependent over- and under production will cause more volatile and higher spot price, but fees prevent the roll-out of Power- to-Gas. In this paper, we differentiate the new flexible loads of energy conversion and storage like Power-to-X or batteries from the regular loads of the core activity of industries and we design the tariff system of flexible loads in such a way to be financially attractive, by abandoning a security of supply that they actually do not need. In a previous work, the technical functionality of a load management system solving the grid congestion issues was described. Here we aggregate the yearly energy balance and the associated costs in six case studies to verify that the roll-out of the new flexible loads is economically viable. The financial attractiveness of the roll-out of new flexible loads with reduced tariff system and future drop in technology price is verified in all these customers and the tariff reduction for conditional loads is the decisive factor of the profitability in four of them.
    04B - Beitrag Konferenzschrift