Corvini, Philippe

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Corvini
Vorname
Philippe
Name
Corvini, Philippe

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Assessing the biodegradation of btex and stress response in a bio-permeable reactive barrier using compound-specific isotope analysis
    (MDPI, 20.07.2022) Chen, Tianyu; Wu, Yan; Wang, Jinnan; Corvini, Philippe [in: International Journal of Environmental Research and Public Health]
    By using compound-specific isotope analysis (CSIA) in combination with high-throughput sequencing analysis (HTS), we successfully evaluated the benzene and toluene biodegradation in a bio-permeable reactive barrier (bio-PRB) and the stress response of the microbial community. Under stress conditions, a greater decline in the biodegradation rate of BTEX was observed compared with the apparent removal rate. Both an increase in the influent concentration and the addition of trichloroethylene (TCE) inhibited benzene biodegradation, while toluene biodegradation was inhibited by TCE. Regarding the stress response, the relative abundance of the dominant bacterial community responsible for the biodegradation of BTEX increased with the influent concentration. However, the dominant bacterial community did not change, and its relative abundance was restored after the influent concentration decreased. On the contrary, the addition of TCE significantly changed the bacterial community, with Aminicenantes becoming the dominant phyla for co-metabolizing TCE and BTEX. Thus, TCE had a more significant influence on the bio-PRB than an increasing influent concentration, although these two stress conditions showed a similar degree of influence on the apparent removal rate of benzene and toluene. The present work not only provides a new method for accurately evaluating the biodegradation performance and microbial community in a bio-PRB, but also expands the application of compound-specific isotope analysis in the biological treatment of wastewater.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites
    (Elsevier, 2022) Yang, Zhen-Ni; Liu, Ze-Shen; Wang, Ke-Huan; Liang, Zong-Lin; Abdugheni, Rashidin; Huang, Ye; Wang, Run-Hua; Ma, Hong-Lin; Wang, Xiao-Kang; Yang, Mei-Ling; Zhang, Bing-Ge; Li, De-Feng; Jiang, Cheng-Ying; Liu, Shuang-Jiang; Corvini, Philippe [in: Environmental Science & Ecotechnology]
    Contaminated sites from electronic waste (e-waste) dismantling and coking plants feature high concentrations of heavy metals (HMs) and/or polycyclic aromatic hydrocarbons (PAHs) in soil. Mixed contamination (HMs + PAHs) hinders land reclamation and affects the microbial diversity and function of soil microbiomes. In this study, we analyzed HM and PAH contamination from an e-waste dismantling plant and a coking plant and evaluated the influences of HM and PAH contamination on soil microbiomes. It was noticed that HMs and PAHs were found in all sites, although the major contaminants of the e-waste dismantling plant site were HMs (such as Cu at 5,947.58 ± 433.44 mg kg−1, Zn at 4,961.38 ± 436.51 mg kg−1, and Mn at 2,379.07 ± 227.46 mg kg−1), and the major contaminants of the coking plant site were PAHs (such as fluorene at 11,740.06 ± 620.1 mg kg−1, acenaphthylene at 211.69 ± 7.04 mg kg−1, and pyrene at 183.14 ± 18.89 mg kg−1). The microbiomes (diversity and abundance) of all sites were determined via high-throughput sequencing of 16S rRNA genes, and redundancy analysis was conducted to investigate the relations between soil microbiomes and contaminants. The results showed that the microbiomes of the contaminated sites divergently responded to HMs and PAHs. The abundances of the bacterial genera Sulfuritalea, Pseudomonas, and Sphingobium were positively related to PAHs, while the abundances of the bacterial genera Bryobacter, Nitrospira, and Steroidobacter were positively related to HMs. This study promotes an understanding of how soil microbiomes respond to single and mixed contamination with HMs and PAHs.
    01A - Beitrag in wissenschaftlicher Zeitschrift