Köser, Joachim

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Köser
Vorname
Joachim
Name
Köser, Joachim

Suchergebnisse

Gerade angezeigt 1 - 4 von 4
  • Publikation
    An origami 3D patterned cellulose-based scaffold for bioengineering cardiovascular applications
    (Springer, 2023) Gullo, Maurizio; Melo Rodriguez, Gabriela; Trueb, Donata; Schoelkopf, Joachim; Köser, Joachim [in: Cellulose]
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    An origami like 3D patterned cellulose-based scaffold for bioengineering cardiovascular applications
    (Springer, 2023) Rodriguez, Gabriela Melo; Trueb, Donata; Köser, Joachim; Schoelkopf, Joachim; Gullo, Maurizio [in: Cellulose]
    In this work we describe the manufacturing of cellulosic, cell compatible scaffolds with an inherent 3D origami crease pattern for applications in cardiac tissue engineering. Different cellulosic materials were studied, among them cotton linters, fibers obtained from eucalyptus, pine, spruce and lyocell. Formed sheets made of cotton linters were chosen for further study due to the highest biocompatibility and mechanical properties best suited for cardiomyocytes in wet and dry conditions: E - modulus of 0.8 GPa, tensile strength of 4.7 MPa and tensile strength in wet environment of 2.28 MPa. Cell alignment is desired to achieve directional contraction of the cardiac tissue, and several options were investigated to achieve fiber alignment, e.g. a dynamic sheet former and Rapid Köthen sheet former. Although the orientation was minimal, cells cultured on the cellulose fibers grew and aligned along the fibers. Origami inspired crease patterns were applied to the cellulose scaffolds in order to introduce directional flexibility beneficial for cardiac contraction. The transfer of a Miura-ori crease pattern was successfully applied in two ways: folding of the dried sheet between PET foils pre-formed in a 3D printed mold, and in situ wet fiber molding on a 3D-patterned mesh mounted in the sheet former’s sieve section. The latter approach enables upscaling for potential mass production.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Enhanced formation of nanometric titanium cones by incorporation of titanium, tungsten and/or iron in a helium ion beam
    (Elsevier, 12/2022) Sanchez, Fabien; Steiner, Roland; Latttner, P.; Spicher, J.; Mathys, Daniel; Antunes, Rodrigo; Marcin, Kisiel; Mukkadam, Khaled; Astasov-Fraunhofer, Monika; Kühl, Sebastian; Köser, Joachim; Marot, Laurent; Meyer, Ernst [in: Surfaces and Interfaces]
    Surface patterning of bio-compatible titanium (Ti) shows a growing interest in the medical field. The engineering of material surfaces can achieve bactericidal properties and osteointegration improvements in order to develop medical implants. Spikes-like surface morphologies have already demonstrated the development of promising bactericidal properties. A barely new method to produce nanometric-sized cones on titanium consists of helium (He) ion irradiation using low energies ( 100 eV) and temperatures comprised between 0.25 T/T 0.5 (with T being the melting temperature of the material). Ti, iron (Fe) and/or tungsten (W) were incorporated in a He beam, and their amounts were quantified using X-ray Photoelectron Spectroscopy (XPS). The He ion energy was varied from 70 and 120 eV, the surface temperatures from 571 to 651 K for fluences approximately equal to 1024 m−2. After irradiation, the surface morphology was characterized using Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB). This study demonstrated the capability for irradiated Ti surfaces to form cones with tunable density, aspect ratio, and heights with the incorporation of Ti, Fe and/or W in a He ion. Additionally, the growth rate of the cones was enhanced by about 30 times in comparison to pure He irradiation as a function of the chosen materials introduced in the He beam.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Novel Titanium Nanospike Structure Using Low-Energy Helium Ion Bombardment for the Transgingival Part of a Dental Implant
    (MDPI, 24.03.2022) Mukaddam, Khaled; Astasov-Frauenhoffer, Monika; Fasler-Kan, Elizaveta; Marot, Laurent; Kisiel, Marcin; Steiner, Roland; Sanchez, Fabien; Meyer, Ernst; Bornstein, Michael M.; Kühl, Sebastian; Köser, Joachim [in: Nanomaterials]
    Aim(s): The aim of the study was to fabricate a nanospike surface on a titanium alloy surface using a newly established method of low-energy helium ion bombardment. Various methods to achieve nanospike formation on titanium have been introduced recently, and their antibacterial properties have been mainly investigated with respect to Escherichia coli and Staphylococcus aureus. Oral pathogens such as Porphyromonas gingivalis play an important role in the development of peri-implantitis. For that reason, the antibacterial properties of the novel, nanostructured titanium surface against P. gingivalis were assessed, and a possible effect on the viability of gingival fibroblasts was evaluated. Materials and Methods: Helium sputtering was employed for developing titanium surfaces with nanospikes of 500 nm (ND) in height; commercially available smooth-machined (MD) and sandblasted and acid-etched titanium disks (SLA) were used as controls. Surface structure characterization was performed through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Following incubation with P. gingivalis, antibacterial properties were determined via conventional culturing and SEM. Additionally, the viability of human gingival fibroblasts (HGFs) was tested through MTT assay, and cell morphology was assessed through SEM. Results: SEM images confirmed the successful establishment of a nanospike surface with required heights, albeit with heterogeneity. AFM images of the 500 nm nanospike surface revealed that the roughness is dominated by large-scale hills and valleys. For frame sizes of 5 × 5 μm and smaller, the average roughness is dominated by the height of the titanium spikes. ND successfully induces dysmorphisms within P. gingivalis cultures following the incubation period, while conventional culturing reveals a 17% and 20% reduction for ND compared to MD and SLA, respectively. Moreover, the nanospike surfaces did not affect the viability of human growth fibroblasts despite their sharp surface. Conclusion(s): This study successfully developed a novel titanium-nanospike-based structuration technique for titanium surfaces. In addition, the nanospikes did not hinder gingival fibroblast viability. Enhanced antimicrobial effects for such a novel nanospike-based resurfacing technique can be achieved through further optimizations for nanospike spacing and height parameters.
    01A - Beitrag in wissenschaftlicher Zeitschrift