Osteoconductive Lattice Microarchitecture for Optimized Bone Regeneration

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorde Wild, Michael
dc.contributor.authorGhayor, Chafik
dc.contributor.authorZimmermann, Simon
dc.contributor.authorRüegg, Jasmine
dc.contributor.authorNicholls, Flora
dc.contributor.authorSchuler, Felix
dc.contributor.authorChen, Tse-Hsiang
dc.contributor.authorWeber, Franz E.
dc.date.accessioned2018-12-14T15:42:29Z
dc.date.available2018-12-14T15:42:29Z
dc.date.issued2018-06
dc.description.abstractSelective laser melting (SLM) is one methodology to realize additive manufacturing and is mainly used to join metal powder in a layer-by-layer manner to produce a solid three-dimensional (3D) object. For bone tissue engineering purposes, scaffolds can readily be designed as 3D data model and realized with titanium known for its excellent osseointegration behavior. The microarchitecture, that is, design with submillimeter features, of additively manufactured scaffolds is in many cases a lattice structure. This study aimed to apply SLM that allows a high degree of microarchitectural freedom to generate lattice structures and to determine the optimal distance between rods and the optimal diameter of rods for osteoconduction (bone ingrowth into scaffolds) and bone regeneration. For the biological readout, diverse SLM-fabricated titanium implants were placed in the calvarium of rabbits and new bone formation and defect bridging were determined after 4 weeks of healing. The results from the middle section of the defects show that with a lattice microarchitecture, the optimal distance between titanium rods is around 0.8 mm and the optimal rod dimension is between 0.3 and 0.4 mm to optimize defect bridging and bone regeneration.
dc.description.urihttps://www.liebertpub.com/doi/abs/10.1089/3dp.2017.0129
dc.identifier.doihttps://doi.org/10.1089/3dp.2017.0129
dc.identifier.issn2329-7670
dc.identifier.issn2329-7662
dc.identifier.urihttp://hdl.handle.net/11654/26981
dc.language.isoenen_US
dc.publisherMary Ann Lieberten_US
dc.relation.ispartof3D Printing and Additive Manufacturingen_US
dc.subjectselective laser melting
dc.subjecttitanium
dc.subjectbone regeneration
dc.subjectbone repair
dc.subjectosteoconduction
dc.subjectgrid architecture
dc.subjectlattice architecture
dc.subjectadditive manufacturing
dc.titleOsteoconductive Lattice Microarchitecture for Optimized Bone Regeneration
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume6
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.publicationOnlineJa
fhnw.publicationStatePublished
relation.isAuthorOfPublication135938a9-969d-4ea3-9bb2-7ff1d77554cb
relation.isAuthorOfPublication80c1bb36-41a2-4fcc-bf30-f7a46664878f
relation.isAuthorOfPublication1c23a7ce-7e2e-4303-9d36-1ec40685e790
relation.isAuthorOfPublication.latestForDiscovery135938a9-969d-4ea3-9bb2-7ff1d77554cb
Dateien