Hasler, Oliver

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Hasler
Vorname
Oliver
Name
Oliver Hasler

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Vorschaubild
    Publikation
    Image-based orientation determination of mobile sensor platforms
    (International Society of Photogrammetry and Remote Sensing, 2021) Hasler, Oliver; Nebiker, Stephan
    Abstract. Estimating the pose of a mobile robotic platform is a challenging task, especially when the pose needs to be estimated in a global or local reference frame and when the estimation has to be performed while the platform is moving. While the position of a platform can be measured directly via modern tachymetry or with the help of a global positioning service GNSS, the absolute platform orientation is harder to derive. Most often, only the relative orientation is estimated with the help of a sensor mounted on the robotic platform such as an IMU, with one or multiple cameras, with a laser scanner or with a combination of any of those. Then, a sensor fusion of the relative orientation and the absolute position is performed. In this work, an additional approach is presented: first, an image-based relative pose estimation with frames from a panoramic camera using a state-of-the-art visual odometry implementation is performed. Secondly, the position of the platform in a reference system is estimated using motorized tachymetry. Lastly, the absolute orientation is calculated using a visual marker, which is placed in the space, where the robotic platform is moving. The marker can be detected in the camera frame and since the position of this marker is known in the reference system, the absolute pose can be estimated. To improve the absolute pose estimation, a sensor fusion is conducted. Results with a Lego model train as a mobile platform show, that the trajectory of the absolute pose calculated independently with four different markers have a deviation < 0.66 degrees 50% of the time and that the average difference is < 1.17 degrees. The implementation is based on the popular Robotic Operating System ROS.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Performance evaluation of a mobile mapping application using smartphones and augmented reality frameworks
    (2020) Hasler, Oliver; Blaser, Simon; Nebiker, Stephan
    In this paper, we present a performance evaluation of our smartphone-based mobile mapping application based on an augmented reality (AR) framework in demanding outdoor environments. The implementation runs on Android and iOS devices and demonstrates the great potential of smartphone-based 3D mobile mapping. The application includes several functionalities such as device tracking, coordinate, and distance measuring as well as capturing georeferenced imagery. We evaluated our prototype system by comparing measured points from the tracked device with ground control points in an outdoor environment with four different campaigns. The campaigns consisted of open and closed-loop trajectories and different ground surfaces such as grass, concrete and gravel. Two campaigns passed a stairway in either direction. Our results show that the absolute 3D accuracy of device tracking with state-of-the-art AR framework on a standard smartphone is around 1% of the travelled distance and that the local 3D accuracy reaches sub-decimetre level.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Implementation and first evaluation of an indoor mapping application using smartphones and frameworks
    (2019) Hasler, Oliver; Blaser, Stefan; Nebiker, Stephan
    In this paper, we present the implementation of a smartphone-based indoor mobile mapping application based on an augmented reality (AR) framework and a subsequent performance evaluation in demanding indoor environments. The implementation runs on Android and iOS devices and demonstrates the great potential of smartphone-based 3D mobile mapping. The application includes several functionalities such as device tracking, coordinate, and distance measuring as well as capturing georeferenced imagery. We evaluate our prototype system by comparing measured points from the tracked device with ground control points in an indoor environment with two different campaigns. The first campaign consists of an open, one-way trajectory whereas the second campaign incorporates a loop closure. In the second campaign, the underlying AR framework successfully recognized the start location and correctly repositioned the device. Our results show that the absolute 3D accuracy of device tracking with a standard smartphone is around 1% of the travelled distance and that the local 3D accuracy reaches sub-decimetre level.
    04B - Beitrag Konferenzschrift