Experimental and numerical development on multi-material joining technology for sandwich-structured composite materials

dc.accessRightsAnonymous*
dc.contributor.authorZweifel, Lucian
dc.contributor.authorZhilyaev, Igor
dc.contributor.authorBrauner, Christian
dc.contributor.authorRheme, Martin
dc.contributor.authorEckhard, Gregor
dc.contributor.authorBersier, Valentin
dc.contributor.authorGlavaški, Slobodan
dc.contributor.authorPfeiffer, Ricardo
dc.date.accessioned2023-06-15T12:41:57Z
dc.date.available2023-01-11T12:18:38Z
dc.date.available2023-06-15T12:41:57Z
dc.date.issued2021-10-12
dc.description.abstractCreating connection points for sandwich-structured composites without losing technical performance is key to realising optimal lightweight structures. The patented LiteWWeight® technology presents cost-effective connections on sandwich panels in a fraction of a few seconds without predrilling. Ultrasonic equipment is used to insert a thermoplastic fastener into the substrate material and partially melt it into the porous internal structure. This creates a highly interlocked connection (connection strength is above 500 N) suitable for semi-structural applications. This study focused on the simulation and experimental validation of this process, mainly on the interaction between the pin and the substrate material during the joining process. The dynamic thermo-mechanical model showed reasonable agreement with experimental methods such as process data, high-speed camera monitoring or computed tomography and allowed the prediction of the connection quality by evaluation of the degree of interlock. The connection strength prediction by the developed model was validated within several various process setups, resulting in a prediction accuracy between 94–99% depending on the setup.en_US
dc.identifier.doi10.3390/ma14206005
dc.identifier.issn1521-4095
dc.identifier.issn0935-9648
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34283
dc.identifier.urihttps://doi.org/10.26041/fhnw-4942
dc.issue20en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofMaterialsen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subject.ddc620 - Ingenieurwissenschaften und Maschinenbauen_US
dc.titleExperimental and numerical development on multi-material joining technology for sandwich-structured composite materialsen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift*
dc.volume14en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Technik und Umwelt FHNWde_CH
fhnw.affiliation.institutInstitut für Kunststofftechnikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication3817fe98-3acc-48ae-bf96-0024096826fd
relation.isAuthorOfPublication2c259f56-fd7f-4362-9eb5-fcb554cc28db
relation.isAuthorOfPublication40eda2d4-696c-4aeb-98ff-8a54c640cf73
relation.isAuthorOfPublication.latestForDiscovery2c259f56-fd7f-4362-9eb5-fcb554cc28db
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
materials-14-06005-v3.pdf
Größe:
33.94 MB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2023-06-15 08:21:26
Volltext und Lizenz
2023-01-11 12:18:38
* Ausgewählte Version