The mechanical characterization of welded hybrid joints based on a fast-curing epoxy composite with an integrated phenoxy coupling layer
Loading...
Authors
Author (Corporation)
Publication date
08.02.2022
Typ of student thesis
Course of study
Collections
Type
01A - Journal article
Editors
Editor (Corporation)
Supervisor
Parent work
Materials
Special issue
DOI of the original publication
Link
Series
Series number
Volume
15
Issue / Number
3
Pages / Duration
Patent number
Publisher / Publishing institution
MDPI
Place of publication / Event location
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
The joining of composites mostly relies on traditional joining technologies, such as film or paste adhesives, or mechanical fasteners. This study focuses on the appealing approach of using standard thermoplastic welding processes to join thermosets. To achieve this, a thermoplastic coupling layer is created by curing with a thermoset composite part. This leads to a functional surface that can be utilized with thermoplastic welding methods. The thermoplastic coupling layer is integrated as a thin film, compatible with the thermoset resin in the sense that it can partially diffuse in a controlled way into the thermoset resin during the curing cycle. Recent studies showed the high affinity for the interphase formation of poly hydroxy ether (phenoxy) film as coupling layer, in combination with a fast-curing epoxy system that cures within 1 min at 140 °C. In this study, an investigation based on resistance and ultrasonic welding techniques with different testing conditions of single-lap shear samples (at room temperature, 60 °C, and 80 °C) was performed. The results showed strong mechanical strengths of 28.9 MPa (±0.7%) for resistance welding and 24.5 MPa (±0.1%) for ultrasonic welding, with only a minor reduction in mechanical properties up to the glass transition temperature of phenoxy (90 °C). The combination of a fast-curing composite material with an ultra-fast ultrasonic joining technology clearly demonstrates the high potential of this joining technique for industrial applications, such as automotive, sporting goods, or wind energy. The innovation allowing structural joining performance presents key advantages versus traditional methods: the thermoplastic film positioning in the mold can be automated and localized, joint formation requires only a fraction of a second, and the joining operation does not require surface preparation/cleaning or structure deterioration (drilling).
Keywords
Subject (DDC)
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
1521-4095
0935-9648
0935-9648
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Published
Review
Peer review of the complete publication
Open access category
Gold
Citation
Zweifel, L., Ritter, K., & Brauner, C. (2022). The mechanical characterization of welded hybrid joints based on a fast-curing epoxy composite with an integrated phenoxy coupling layer. Materials, 15(3). https://doi.org/10.3390/ma15031264